Особенности водного режима при эксплуатации современных жаротрубных водогрейных котлов
Автор: П.А. Хаванов
Источник: Ежемесячный специализированный интернет-журнал «С.О.К. (Сантехника Отопление Кондиционирование)».
Надежная и эффективная работа децентрализованной системы теплоснабжения здания в значительной степени зависит от теплотехнических и эксплуатационных характеристик автономного теплогенератора, обеспечивающего тепловой энергией системы отопления, вентиляции и горячего водоснабжения. В качестве первичного энергоносителя в подавляющем большинстве случаев используется химическая энергия ископаемого топлива, а для коммунально-бытовых целей в значительных объемах применяется газообразное углеводородное топливо: природный газ и регазифицированный сжиженный газ (пропан-бутановые смеси). Совершенно очевидно, что используемое в теплогенераторе газогорелочное устройство (ГГУ), как основное топливо использующее оборудование, будет в значительной степени определять его теплотехнические, экологические и потребительские качества.
Процесс сжигания газа состоит из последовательно протекающих стадий:
а) образование гомогенной газовоздушной смеси (топлива и окислителя);
б) подогрев смеси до температуры воспламенения;
в) химическое реагирование – собственно реакция горения.
Стадия смесеобразования оказывает существенное влияние на горение и может осуществляться как предварительная (подготовительная) стадия или происходить параллельно с другими процессами. В теплогенераторах малой мощности (до 300500 кВт), используемых в автономных системах теплоснабжения, применяются дутьевые или эжекционные газовые горелки. Основным преимуществом атмосферных ГГУ является их эксплуатация без надувных вентиляторов для принудительной подачи воздуха. Процесс смесеобразования в них осуществляется за счет кинетической энергии газовой струи, выходящей из дозирующего сопла горелки, которая и эжектирует воздух.
По степени завершения процесса предварительного смесеобразования газа с воздухом (перед воспламенением) атмосферные ГГУ подразделяются наследующие категории:
диффузионные – без предварительного образования смеси газа и воздуха;
кинетические – с полным предварительным смешением газа и всего воздуха, требуемого для горения;
диффузионно-кинетические – с неполным предварительным смешением части воздуха, необходимого для полного сгорания (первичного воздуха), и газа.
Стадии смесеобразования в атмосферных ГГУ являются наиболее важными, т.к. стабилизация пламени, глубина регулирования, экологические показатели и надежность эксплуатации ГГУ в значительной мере определяются именно обеспечением стабильности условий образования газовоздушной смеси в различных режимах горения.
Газообразное топливо
В коммунальной энергетике преимущественное использование получили природный газ и сжиженные пропан-бутановые смеси. Природный газ различных месторождений из трубопроводов высокого и среднего давлений после редуцирования в газорегулирующих установках (ГРС, ГРП, ГРУ) поступает в газопроводы низкого давления с нормируемым избыточным давлением газа до Ризб<500 мм вод.ст.=50 мбар. Обычно эксплуатационное давление газа в отечественных сетях низкого давления не превышает 18 мбар.
Сжиженные пропан-бутановые смеси поступают к потребителям в цистернах или баллонах. Перед сжиганием сжиженный газ регазифицируется. У потребителей малой мощности регазификация осуществляется путем снижения давления газовой фазы в емкости при отборе газа. Регулирование давления газовой фазы осуществляется местным регулятором, настраиваемым на низкое давление Pизб=2035 мбар.
Состав магистрального природного газа зависит от месторождения или состава смеси газов различных месторождений и состоит преимущественно из метана СН4 = 6598% и небольшого количества более тяжелых углеводородов. Негорючими компонентами (балластом) в составе природного газа чаще всего являются азот и углекислый газ. Среднее значение низшей теплоты сгорания природного газа Qн=3140 мДж/м3.
Сжиженные технические смеси пропан-бутана должны содержать не менее 93% пропан-бутановых (С3Н8+С4Н10) фракций. Среднее значение низшей теплоты сгорания, в пересчете на 1 м3 регазифицированной пропан-бутановой смеси при нормальных условиях, Qн=92,2 мДж/м3.
Особенности горения
Сжигание топлива осуществляется в атмосферном воздухе, состоящем из окислителя – кислорода О2 (21%) и инертного, не участвующего в горении азота N2 (79%). Теоретически необходимое для полного сжигания горючих компонентов газа количество воздуха рассчитывается по составу газа и для природного газа различных месторождений составляет V0=8,510 м3/м3, а для сжиженного газа V0=2430 –м3/м3.Как бы ни было совершенно ГГУ, его работа в режимах, соответствующих подаче на горение теоретически необходимого объема воздуха, сопровождается потерями от химической неполноты горения. Взаимная диффузия топлива и окислителя при образовании газовоздушной смеси затрудняется наличием балластных газов и образующихся продуктов сгорания, что объясняет необходимость работы ГГУ с большими расходами воздуха на горение.
Режимы работы атмосферных ГТУ
Малая кинетической энергия струи природного газа низкого давления существенно ограничивает возможности эжектирования воздуха при смесеобразовании в атмосферных ГГУ, а также ограничивает глубину регулирования при сохранении соотношения газ-воздух в смеси.
При диффузионном сжигании газа процесс смесеобразования совмещен с процессом горения, развивающимся при достижении контакта газа с окислителем. Высокие температуры в топках котлов обуславливают высокие скорости химического реагирования, а время протекания процесса горения будет полностью определяться интенсивностью процесса смесеобразования. Поэтому для получения относительно короткого диффузионного факела используются приемы максимальной интенсификации смесеобразования:
Выгодной особенностью диффузионного горения (без предварительного смесеобразования) является принципиальная невозможность проскока пламени внутрь ГГУ. Однако условия стабилизации фронта пламени по отрыву, из-за малой скорости распространения пламени, и сравнительно большие размеры диффузионного факела существенно ограничивают тепловые напряжения топочного объема и мощность ГГУ в режимах максимальных нагрузок теплогенератора.
При кинетическом сжигании газа удается сократить время горения (максимально увеличить скорость распространения пламени), т.к. из времени горения практически исключается самый длительный процесс – смесеобразование. Таким образом, скорость горения будет определяться интенсивностью прогрева смеси и кинетикой химического реагирования. Учитывая значительные объемы воздуха, которые должны эжектироваться газовой струей для реализации кинетического процесса горения, при разработке атмосферных ГГУ с полным предварительным смешением стремятся минимизировать аэродинамические сопротивления узла эжекции и смешения, а также головки горелки. Стабилизация процесса горения в ГГУ полного предварительного смешения осуществляется в диапазонах скоростей выхода газовоздушной смеси из отверстий головки горелки, исключающих проскок и отрыв фронта пламени.
Отдельную группу атмосферных ГГУ полного предварительного смешения представляют беспламенные инфракрасные горелки, в которых кинетическое сжигание топливо воздушной смеси осуществляется внутри пористой огнеупорной насадки или системы большого количества мелких каналов, изготовленных в виде блоков из огнеупорной керамики. Высокотемпературная насадка обеспечивает быстрый прогрев и воспламенение топливовоздушной смеси, короткопламенное сгорание которой практически полностью завершается внутри огнеупорной насадки. Высокотемпературная часть инфракрасных горелок может изготавливаться в виде плоских, цилиндрических, полусферических (или иных конфигураций) блоков, рационально размещаемых в топке теплогенератора соответствующей формы, что обеспечивает эффективный радиационный теплообмен. Однако стабильное горение в инфракрасных ГГУ имеет очень узкую область теплового режима работы высокотемпературной насадки (которая изготавливается с каналами меньше критического диаметра для природного или сжиженного газа) и по условиям беспламенного сжигания газа.
Подача на горение вторичного воздуха осуществляется за счет разрежения в топке, создаваемого дымовой трубой или дымососом. Естественная тяга дымовой трубы зависит от температуры наружного воздуха, поэтому для стабилизации условий подачи вторичного воздуха часто применяется тягопрерыватель. Дымосос, используемый рядом производителей проточных настенных котлов с закрытой топкой, позволяет работать практически с постоянным разрежением в топке, незначительно зависящим от самотяги дымовой трубы. Вместе с тем модулирование мощности ГГУ, осуществляемое путем изменения давления газа перед газовыми соплами, неизбежно приводит к изменению соотношения первичного и вторичного воздуха, а также, соответственно, к изменению результирующего значения коэффициента избытка воздуха горелки. Количество вторичного воздуха, поступающего в топку, в малой степени зависит от режима работы ГГУ, поэтому при малых нагрузках происходит заметное разбавление продуктов сгорания избыточным воздухом. Изменяются условия теплообмена в поверхностях нагрева и эффективность работы котла в целом.
Избежать рассмотренных негативных эффектов позволяет позиционное регулирование работы ГГУ – «включено-выключено» в предварительно отрегулированном режиме номинальной мощности. Однако работа ГГУ в прерывистом режиме при частичных нагрузках на теплогенератор сопровождается колебанием температуры теплоносителя на выходе, что далеко не всегда допустимо по условиям эксплуатации, например в режиме горячего водоснабжения.
Для атмосферных ГГУ одной из самых важных является проблема регулирования мощности. По этой причине в последних разработках атмосферных ГГУ все чаще встречаются горелки полного предварительного смешения, в которых для подачи воздуха на горение дополнительно используется разряжение в топке (закрытая топка), которое компенсирует недостаток кинетической энергии эжектирующей струи газа. Такие горелки при небольшом возрастании коэффициента избытка воздуха на частичных нагрузках способны обеспечивать устойчивое горение в диапазоне от 20 до 100 % номинальной мощности. Также у производителей достаточно четко просматривается тенденция деления мощности горелки, необходимая мощность которой набирается в блок из 1020 и более модулей малой мощности. Общими элементами блока являются устройства подачи топлива от единого газового коллектора, системы розжига, автоматика регулирования и безопасности. Такой технический прием позволяет значительно снизить аэродинамические потери при эжектировании воздуха, смесеобразовании и выходе газовоздушной смеси из головки горелки, а также дает возможность достаточно просто набирать необходимые мощности ГГУ для всего производимого типоряда теплогенераторов. Модульная конструкция горелки полного предварительного смешения, имея большую глубину регулирования, лучше адаптируется к колебаниям давления газа, характерным для отечественных газовых сетей низкого давления. Ряд производителей используют газовые сопла со сложной конфигурацией отверстия (иногда с несколькими отверстиями), что при истечении увеличивает поверхность газовой струи и улучшает эжекцию воздуха.
Продолжаются работы и по разработке атмосферных инфракрасных горелок, обеспечивающих высокую интенсивность теплообмена в топках теплогенераторов. Однако малая глубина регулирования этих горелок, достаточно длительный период разогрева (что особенно важно при позиционном регулировании) существенно ограничивают их применение, несмотря на все преимущества, реализовать которые в полной мере без применения дутьевого вентилятора весьма проблематично. Как правило, удельные нагрузки топочного объема котла для атмосферных ГГУ в 23 раза ниже, чем для дутьевых горелок.
Для бытового потребителя положительной особенностью работы атмосферных ГГУ являются низкие шумовые характеристики их работы – эквивалентный уровень звука 2025 дБ, что обусловлено меньшей турбулизацией факела в топке и отсутствием шумов дутьевого вентилятора.
Экологические показатели
Режимы работы атмосферных ГГУ в диапазоне допустимых значений теплового напряжения объема топки Q/V [кВт/м3] и тепловые напряжения поперечного сечения топки (форсировка) Q/F [кВт/м2] в значительной степени определяются условиями интенсификации всех этапов процесса горения и возможностями стабилизации фронта воспламенения. Высота и конфигурация топки автономного теплогенератора должны исключать появление продуктов химической неполноты горения вследствие контакта (наброса) пламени с холодной поверхностью теплообмена и срыва реакции горения из-за переохлаждения реагирующих масс. В ГГУ с неполным предварительным смешением факел должен располагаться в топке так, чтобы обеспечивался равномерный подвод вторичного воздуха с требуемым избытком воздуха по всей высоте пламени.
Таким образом, атмосферное ГГУ разрабатывается для конкретной топки автономного теплогенератора и его использование в других теплогенераторах без соответствующей адаптации конструкции топки, как правило, невозможно.
В силу геометрических факторов в топках малого объема автономных теплогенераторов имеет место большее значение отношения поверхности топки к ее объему, чем в топках большого объема мощных котлов. Поэтому тепловые напряжения топочного объема в автономных теплогенераторах малой мощности достигают значений qV=12,1 мВт/м3, которые характерны для высокофорсированных мощных котельных агрегатов и, как правило, сопровождаются повышенным содержанием в продуктах сгорания загрязняющих окружающую среду выбросов монооксида углерода (СО) и оксидов азота (NО). Концентрация вредных выбросов в продуктах сгорания для современных теплогенераторов с атмосферными горелками регламентируется требованиями ряда ГОСТов.
Концентрация оксидов углерода (СО) в продуктах сгорания исправных и отрегулированных ГГУ в основном зависит от совершенства процесса смесеобразования и завершенности реакции окисления. Образование оксида углерода является промежуточной стадией горения газообразного топлива, поэтому недостаток кислорода и переохлаждения зоны горения обуславливают рост концентрации СО в продуктах сгорания. Оксиды азота в продуктах сгорания газообразного топлива имеют преимущественно термическое происхождение. При достаточно высоких температурах (более 1800 °C) происходит окисление азота воздуха до монооксида азота(~9798 % объемных NO), который затем в атмосфере окисляется до диоксида азота (NO2), а их суммарная концентрация пересчитывается на диоксид азота, часто представляемая символом NOx. Источником термических оксидов азота являются высокотемпературные зоны газового факела, поэтому подавление их эмиссии связано с интенсивностью охлаждения зоны горения или снижением температуры в ней за счет рециркуляции в нее балластирующих масс продуктов сгорания.
Другой составляющей в объеме выбросов оксидов азота являются так называемые «быстрые» оксиды, источником которых является зона активного реагирования углеводородного топлива и окислителя (характеризующаяся высокой концентрацией активных радикалов) при недостатке последнего. Температурный уровень процесса образования быстрых оксидов азота (-1200 °C) значительно ниже, чем термических, поэтому избежать их образования практически не возможно. Однако снизить эмиссию быстрых оксидов можно, исключив дефицит окислителя в факеле путем увеличения первичного коэффициента избытка воздуха в атмосферных ГГУ или осуществив переход на горелки полного предварительного смешения.
Следует отметить, что технические возможности подавления процессов образования вредных выбросов в атмосферных ГГУ весьма ограничены, поэтому, как правило, по экологическим показателям они уступают надувным газовым горелкам.