
1 Neural Network Vision for Robot

Driving

Dean A. Pomerleau

Carnegie Mellon University

Abstract

Many real world problems require a degree of 
exibility that is di�-
cult to achieve using hand programmed algorithms. One such domain is
vision-based autonomous driving. In this task, the dual challenges of a con-
stantly changing environment coupled with a real time processing constrain
make the 
exibility and e�ciency of a machine learning system essential.
This chapter describes just such a learning system, called ALVINN (Au-
tonomous Land Vehicle In a Neural Network). It presents the neural net-
work architecture and training techniques that allow ALVINN to drive in
a variety of circumstances including single-lane paved and unpaved roads,
multilane lined and unlined roads, and obstacle-ridden on- and o�-road
environments, at speeds of up to 55 miles per hour.

1. Introduction

Autonomous navigation is a di�cult problem for traditional vision and robotic
techniques, primarily because of the noise and variability associated with real
world scenes. Autonomous navigation systems based on traditional image process-
ing and pattern recognition techniques often perform well under certain conditions
but have problems with others. Part of the di�culty stems from the fact that the
processing performed by these systems remains �xed across various environments.

Arti�cial neural networks have displayed promising performance and 
exi-
bility in other domains characterized by high degrees of noise and variability,
such as handwritten character recognition [17] and speech recognition[1] and face
recognition[4]. ALVINN (Autonomous Land Vehicle In a Neural Network) is a
system that brings the 
exibility of connectionist learning techniques to the task
of autonomous robot navigation. Speci�cally, ALVINN is an arti�cial neural net-
work designed to control the Navlab, Carnegie Mellon's autonomous driving test
vehicle (See Figure 1).

This chapter describes the architecture, training and performance of the ALVINN
system. It demonstrates how simple connectionist networks can learn to precisely
guide a mobile robot in a wide variety of situations when trained appropriately.

1



2 POMERLEAU

Figure 1: The CMU Navlab Autonomous Navigation Testbed

In particular, this chapter presents training techniques that allow ALVINN to
learn in under 5 minutes to autonomously control the Navlab by watching a hu-
man driver's response to new situations. Using these techniques, ALVINN has
been trained to drive in a variety of circumstances including single-lane paved
and unpaved roads, multilane lined and unlined roads, and obstacle-ridden on-
and o�-road environments, at speeds of up to 55 miles per hour.

2. Network Architecture

The basic network architecture employed in the ALVINN system is a single hidden
layer feedforward neural network (See Figure 2). The input layer now consists of
a single 30x32 unit \retina" onto which a sensor image from either a video camera
or a scanning laser range�nder is projected. Each of the 960 input units is fully
connected to the hidden layer of 4 units, which is in turn fully connected to the
output layer. The 30 unit output layer is a linear representation of the currently
appropriate steering direction which may serve to keep the vehicle on the road
or to prevent it from colliding with nearby obstacles1. The centermost output
unit represents the \travel straight ahead" condition, while units to the left and
right of center represent successively sharper left and right turns. The units on
the extreme left and right of the output vector represent turns with a 20m radius
to the left and right respectively, and the units in between represent turns which
decrease linearly in their curvature down to the \straight ahead" middle unit in
the output vector.

1The task a particular driving network performs depends on the type of input sensor image

and the driving situation it has been trained to handle.
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Figure 2: Neural network architecture for autonomous driving.

To drive the Navlab, an image from the appropriate sensor is reduced to
30x32 pixels and projected onto the input layer. After propagating activation
through the network, the output layer's activation pro�le is translated into a
vehicle steering command. The steering direction dictated by the network is taken
to be the center of mass of the \hill" of activation surrounding the output unit
with the highest activation level. Using the center of mass of activation instead
of the most active output unit when determining the direction to steer permits
�ner steering corrections, thus improving ALVINN's driving accuracy.

3. Network Training

The network is trained to produce the correct steering direction using the back-
propagation learning algorithm [7]. In backpropagation, the network is �rst pre-
sented with an input and activation is propagated forward through the network
to determine the network's response. The network's response is then compared
with the known correct response. If the network's actual response does not match
the correct response, the weights between connections in the network are modi�ed
slightly to produce a response more closely matching the correct response.

Autonomous driving has the potential to be an ideal domain for a supervised
learning algorithm like backpropagation since there is a readily available teaching
signal or \correct response" in the form of the human driver's current steering
direction. In theory it should be possible to teach a network to imitate a person
as they drive using the current sensor image as input and the person's current
steering direction as the desired output. This idea of training \on-the-
y" is
depicted in Figure 3.

Training on real images would dramatically reduce the human e�ort required
to develop networks for new situations, by eliminating the need for a hand-
programmed training example generator. On-the-
y training should also allow
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Figure 3: Schematic representation of training \on-the-
y". The network is shown
images from the onboard sensor and trained to steer in the same direction as the
human driver.

the system to adapt quickly to new situations.

3.1. Potential Problems

There are two potential problems associated with training a network using live
sensor images as a person drives. First, since the person steers the vehicle down
the center of the road during training, the network will never be presented with
situations where it must recover frommisalignment errors. When driving for itself,
the network may occasionally stray from the road center, so it must be prepared
to recover by steering the vehicle back to the middle of the road. The second
problem is that naively training the network with only the current video image
and steering direction may cause it to overlearn recent inputs. If the person drives
the Navlab down a stretch of straight road at the end of training, the network
will be presented with a long sequence of similar images. This sustained lack of
diversity in the training set will cause the network to \forget" what it had learned
about driving on curved roads and instead learn to always steer straight ahead.

Both problems associated with training on-the-
y stem from the fact that
back-propagation requires training data which is representative of the full task
to be learned. The �rst approach we considered for increasing the training set
diversity was to have the driver swerve the vehicle during training. The idea was
to teach the network how to recover from mistakes by showing it examples of
the person steering the vehicle back to the road center. However this approach
was deemed impractical for two reasons. First, training while the driver swerves
would require turning learning o� while the driver steers the vehicle o� the road,
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Figure 4: The single original video image is shifted and rotated to create multiple
training exemplars in which the vehicle appears to be at di�erent locations relative
to the road.

and then back on when he swerves back to the road center. Without this ability
to toggle the state of learning, the network would incorrectly learn to imitate the
person swerving o� the road as well as back on. While possible, turning learning
on and o� would require substantial manual input during the training process,
which we wanted to avoid. The second problem with training by swerving is that
it would require swerving in many circumstances to enable the network to learn a
general representation. This would be time consuming, and also dangerous when
training in tra�c.

3.2. Solution - Transform the Sensor Image

To achieve su�cient diversity of real sensor images in the training set, without
the problems associated with training by swerving, we have developed a technique
for transforming sensor images to create additional training exemplars. Instead of
presenting the network with only the current sensor image and steering direction,
each sensor image is shifted and rotated in software to create additional images
in which the vehicle appears to be situated di�erently relative to the environment
(See Figure 4). The sensor's position and orientation relative to the ground plane
are known, so precise transformations can be achieved using perspective geometry.

The image transformation is performed by �rst determining the area of the
ground plane which is visible in the original image, and the area that should be
visible in the transformed image. These areas form two overlapping trapezoids as
illustrated by the aerial view in Figure 5. To determine the appropriate value for
a pixel in the transformed image, that pixel is projected onto the ground plane,
and then back-projected into the original image. The value of the corresponding
pixel in the original image is used as the value for the pixel in the transformed
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Figure 5: An aerial view of the vehicle at two di�erent positions, with the corre-
sponding sensor �elds of view. To simulate the image transformation that would
result from such a change in position and orientation of the vehicle, the overlap
between the two �eld of view trapezoids is computed and used to direct resampling
of the original image.

image. One important thing to realize is that the pixel-to-pixel mapping which
implements a particular transformation is constant. In other words, assuming a
planar world, the pixels which need to be sampled in the original image in order
to achieve a speci�c shift and translation in the transformed image always remain
the same. In the actual implementation of the image transformation technique,
ALVINN takes advantage of this fact by precomputing the pixels that need to
be sampled in order to perform the desired shifts and translations. As a result,
transforming the original image to change the apparent position of the vehicle
simply involves changing the pixel sampling pattern during the image reduction
phase of preprocessing. Therefore, creating a transformed low resolution image
takes no more time than is required to reduce the image resolution to that required
by the ALVINN network. Obviously the environment is not always 
at. But the
elevation changes due to hills or dips in the road are small enough so as not to
signi�cantly violate the planar world assumption.

3.2.1. Extrapolating Missing Pixels

The less than complete overlap between the trapezoids of Figure 5 illustrates the
need for one additional step in the image transformation scheme. The extra step
involves determining values for pixels which have no corresponding pixel in the
original image. Consider the transformation illustrated in Figure 6. To make it
appear that the vehicle is situated one meter to the right of its position in the
original image requires not only shifting pixels in the original image to the left,
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Figure 6: A schematic example of an original image, and a transformed image
in which the vehicle appears one meter to the right of its initial position. The
black region on the right of the transformed image corresponds to an unseen area
in the original image. These pixels must be extrapolated from the information in
the original image.

but also �lling in the unknown pixels along the right edge. Notice the number of
pixels per row whose value needs to be extrapolated is greater near the bottom
of the image than at the top. This is because the one meter of unknown ground
plane to the right of the visible boundary in the original image covers more pixels
at the bottom than at the top. We have experimented with two techniques for
extrapolating values for these unknown pixels (See Figure 7).

In the �rst technique, to determine the value for a pixel that projects to
the ground plane at point A in the transformed image, the closest ground plane
point in the original viewing trapezoid (point B) is found. This point is then
back-projected into the original image to �nd the appropriate pixel to sample.
The image in the top right shows the sampling performed to �ll in the missing
pixel using this extrapolation scheme. The problem with this technique is that
it results in the \smearing" of the image approximately along rows of the image,
as illustrated in the middle image of Figure 8. In this �gure, the leftmost image
represents an actual reduced resolution image of a two-lane road coming from
the camera. Notice the painted lines delineating the center and right boundaries
of the lane. The middle image shows the original image transformed to make
it appear that the vehicle is one meter to the right of its original position using
the extrapolation technique described above. The line down the right side of
the road can be seen smearing to the right where it intersects the border of the
original image. Because the length of this smear is highly correlated with the
correct steering direction, the network learns to depend on the size of this smear
to predict the correct steering direction. When driving on its own however, this
lateral smearing of features is not present, so the network performs poorly.

To eliminate this artifact of the transformation process, we implemented a
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Figure 7: An aerial view (left) and image based view (right) of the two techniques
used to extrapolate the values for unknown pixels. See text for explanation.

Figure 8: Three reduced resolution images of a two-lane road with lines painted
down the middle and right side. The left image is the original coming directly
from the camera. The middle image was created by shifting the original image
to make it appear the vehicle was situated one meter to the right of its original
position using the �rst extrapolation technique described in the text. The right
image shows the same shift of the original image, but using the more realistic
extrapolation technique.
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more realistic extrapolation technique which relies on the fact that interesting
features (like road edges and painted lane markers) normally run parallel to the
road, and hence parallel to the vehicle's current direction. With this assumption,
to extrapolate a value for the unknown pixel A in Figure 7, the appropriate ground
plane point to sample from the original image's viewing trapezoid is not the closest
point (point B), but the nearest point in the original image's viewing trapezoid
along the line that runs through point A and is parallel to the vehicle's original
heading (point C).

The e�ect this improved extrapolation technique has on the transformed image
can be seen schematically in the bottom image on the right of Figure 7. This
technique results in extrapolation along the line connecting a missing pixel to the
vanishing point, as illustrated in the lower right image. The realism advantage this
extrapolation technique has over the previous scheme can be seen by comparing
the image on the right of Figure 8 with the middle image. The line delineating
the right side of the lane, which was unrealistically smeared using the previous
method, is smoothly extended in the image on the right, which was created by
shifting the original image by the same amount as in the middle image, but using
the improved extrapolation method.

The improved transformation scheme certainly makes the transformed images
look more realistic, but to test whether it improves the network's driving perfor-
mance, we did the following experiment. We �rst collected actual two-lane road
images like the one shown on the left side of Figure 8 along with the direction the
driver was steering when the images were taken. We then trained two networks
on this set of images. The �rst network was trained using the naive transfor-
mation scheme and the second using the improved transformation scheme. The
magnitude of the shifts and rotations, along with the bu�ering scheme used in the
training process are described in detail below. The networks were then tested on
a disjoint set of real two-lane road images, and the steering direction dictated by
the networks was compared with the person's steering direction on those images.
The network trained using the more realistic transformation scheme exhibited
37% less steering error on the 100 test images than the network trained using
the naive transformation scheme. In more detail, the amount of steering error a
network produces is measured as the distance, in number of units (i.e. neurons),
between the peak of the network's \hill" of activation in the output vector and
the \correct" position, in this case the direction the person was actually steering
in. This steering error measurement is illustrated in Figure 9. In this case, the
network trained with the naive transformation technique had an average steering
error across the 100 test images of 3.5 units, while the network trained with the
realistic transformations technique had an average steering error of only 2.2 units.

3.3. Transforming the Steering Direction

As important as the technique for transforming the input images is the method
used to determine the correct steering direction for each of the transformed images.
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Figure 9: To calculate a network's steering error the best �t gaussian is found
to the network's output activation pro�le. The distance between the peak of the
best �t gaussian and the position in the output vector representing the reference
steering direction (in this case the person's steering direction) is calculated. This
distance, measured in units or neurons between the two positions, is de�ned to be
the network's steering error.



1. VISION FOR DRIVING 11

The correct steering direction as dictated by the driver for the original image must
be altered for each of the transformed images to account for the altered vehicle
placement. This is done using a simple model called pure pursuit steering [15]. In
the pure pursuit model, the \correct" steering direction is the one that will bring
the vehicle to a desired location (usually the center of the road) a �xed distance
ahead. The idea underlying pure pursuit steering is illustrated in Figure 10.
With the vehicle at position A, driving for a predetermined distance along the
person's current steering arc would bring the vehicle to a \target" point T, which
is assumed to be in the center of the road.

After transforming the image with a horizontal shift s and rotation � to make it
appear that the vehicle is at point B, the appropriate steering direction according
to the pure pursuit model would also bring the vehicle to the target point T.
Mathematically, the formula to compute the radius of the steering arc that will
take the vehicle from point B to point T is

r =
l
2 + d

2

2d

where r is the steering radius l is the lookahead distance and d is the distance
from point T the vehicle would end up at if driven straight ahead from point B for
distance l. The displacement d can be determined using the following formula:

d = cos � � (dp + s + l tan �)

where dp is the distance from point T the vehicle would end up if it drove straight
ahead from point A for the lookahead distance l, s is the horizontal distance from
point A to B, and � is the vehicle rotation from point A to B. The quantity dp

can be calculated using the following equation:

dp = rp �

q
r2
p
� l2

where rp is the radius of the arc the person was steering along when the image
was taken.

The only remaining unspeci�ed parameter in the pure pursuit model is l, the
distance ahead of the vehicle to select a point to steer towards. Empirically, I have
found that over the speed range of 5 to 55 mph, accurate and stable vehicle control
can be achieved using the following rule: look ahead the distance the vehicle will
travel in 2-3 seconds.

Interestingly, with this empirically determined rule for choosing the lookahead
distance, the pure pursuit model of steering is a fairly good approximation to
how people actually steer. Reid, Solowka and Billing [11] found that at 50km/h,
human subjects responded to a 1m lateral vehicle displacement with a steering
radius ranging from 511m to 1194m. With a lookahead equal to the distance the
vehicle will travel in 2.3 seconds, the pure pursuit model dictates a steering radius
of 594m, within the range of human responses. Similarly, human subjects reacted



12 POMERLEAU

A B

T

θ

Person’s
Steering
   Arc

Transformed
   Steering
      Arc

dp
d

l

l

r

r
r p

r p s

Figure 10: Illustration of the \pure pursuit" model of steering. See text for expla-
nation.

to a 1 degree heading error relative to the current road direction with a steering
radius ranging from 719m to 970m. Again using the 2.3 second travel distance for
lookahead, the pure pursuit steering model's dictated radius of 945m falls within
the range of human responses.

Like the image transformation scheme, the steering direction transformation
technique uses a simple model to determine how a change in the vehicle's posi-
tion and/or orientation would a�ect the situation. In the image transformation
scheme, a planar world hypothesis and rules of perspective projection are used
to determine how changing the vehicle's position and/or orientation would af-
fect the sensor image of the scene ahead of the vehicle. In the steering direction
transformation technique, a model of how people drive is used to determine how
a particular vehicle transformation should alter the correct steering direction. In
both cases, the transformation techniques are independent of the driving situ-
ation. The person could be driving on a single lane dirt road or a multi lane
highway: the transformation techniques would be the same.

Anthropomorphically speaking, transforming the sensor image to create more
training images is equivalent to telling the network \I don't know what features
in the image are important for determining the correct direction to steer, but
whatever they are, here are some other positions and orientations you may see
them in". Similarly, the technique for transforming the steering direction for each
of these new training images is equivalent to telling the network \whatever the
important features are, if you see them in this new position and orientation, here
is how your response should change". Because it does not rely on a strong model
of what important image features look like, but instead acquires this knowledge
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through training, the system is able to drive in a wide variety of circumstances,
as will be seen later in the chapter.

These weak models are enough to solve the two problems associated with
training in real time on sensor data. Speci�cally, using transformed training
patterns allows the network to learn how to recover from driving mistakes that
it would not otherwise encounter as the person drives. Also, overtraining on
repetitive images is less of a problem, since the transformed training exemplars
maintain variety in the training set.

3.4. Adding Diversity Through Buffering

As additional insurance against the e�ects of repetitive exemplars, the training
set diversity is further increased by maintaining a bu�er of previously encoun-
tered training patterns. When new training patterns are acquired through digi-
tizing and transforming the current sensor image, they are added to the bu�er,
while older patterns are removed. We have experimented with four techniques
for determining which patterns to replace. The �rst is to replace oldest patterns
�rst. Using this scheme, the training pattern bu�er represents a history of the
driving situations encountered recently. But if the driving situation remains un-
changed for a period of time, such as during an extended right turn, the bu�er
will loose its diversity and become �lled with right turn patterns. The second
technique is to randomly choose old patterns to be replaced by new ones. Using
this technique, the laws of probability help ensure somewhat more diversity than
the oldest pattern replacement scheme, but the bu�er will still become biased
during monotonous stretches.

The next solution we developed to encourage diversity in the training was
to replace those patterns on which the network was making the lowest error,
as measured by the sum squared di�erence between the network's output and
the desired output. The idea was to eliminate the patterns the network was
performing best on, and leave in the training set those images the network was still
having trouble with. The problem with this technique results from the fact that
the human driver doesn't always steer in the correct direction. Occasionally he
may have a lapse of attention for a moment and steer in an incorrect direction for
the current situation. If a training exemplar was collected during this momentary
lapse, under this replacement scheme it will remain there in the training bu�er for
a long time, since the network will have trouble outputting a steering response to
match the person's incorrect steering command. In fact, using this replacement
technique, the only way the pattern would be removed from the training set would
be if the network learned to duplicate the incorrect steering response, obviously
not a desired outcome. I considered replacing both the patterns with the lowest
error and the patterns with the highest error, but decided against it since high
network error on a pattern might also result on novel input image with a correct
response associated with it. A better method to eliminate this problem is to add a
random replacement probability to all patterns in the training bu�er. This ensured
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that even if the network never learns to produce the same steering response as the
person on an image, that image will eventually be eliminated from the training
set.

While this augmented lowest-error-replacement technique did a reasonable job
of maintaining diversity in the training set, we found a more straightforward way
of accomplishing the same result. To make sure the bu�er of training patterns
does not become biased towards one steering direction, we add a constraint to
ensure that the mean steering direction of all the patterns in the bu�er is as close
to straight ahead as possible. When choosing the pattern to replace, I select
the pattern whose replacement will bring the average steering direction closest to
straight. For instance, if the training pattern bu�er had more right turns than
left, and a left turn image was just collected, one of the right turn images in the
bu�er would be chosen for replacement to move the average steering direction to-
wards straight ahead. If the bu�er already had a straight ahead average steering
direction, then an old pattern requiring a similar steering direction the new one
would be replaced in order to maintain the bu�er's unbiased nature. By actively
compensating for steering bias in the training bu�er, the network never learns to
consistently favor one steering direction over another. This active bias compen-
sation is a way to build into the network a known constraint about steering: in
the long run right and left turns occur with equal frequency.

3.5. Training Details

The �nal details required to specify the training on-the-
y process are the number
and magnitude of transformations to use for training the network. The following
quantities have been determined empirically to provide su�cient diversity to allow
networks to learn to drive in a wide variety of situations. The original sensor image
is shifted and rotated 14 times using the technique describe above to create 14
training exemplars. The size of the shift for each of the transformed exemplars is
chosen randomly from the range -0.6 to +0.6 meters, and the amount of rotation
is chosen from the range -6.0 to +6.0 degrees. In the image formed by the camera
on the Navlab, which has a 42 degree horizontal �eld of view, an image with a
maximum shift of 0.6m results in the road shifting approximately 1/3 of the way
across the input image at the bottom.

Before the randomly selected shift and rotation is performed on the original
image, the steering direction that would be appropriate for the resulting trans-
formed image is computed using the formulas given above. If the resulting steering
direction is sharper than the sharpest turn representable by the network's output
(usually a turn with a 20m radius), then the transformation is disallowed and a
new shift distance and rotation magnitude are randomly chosen. By eliminating
extreme and unlikely conditions from the training set, such as when the road is
shifted far to the right and vehicle is heading sharply to the left, the network is
able to devote more of its representation capability to handling plausible scenarios.

The 14 transformed training patterns, along with the single pattern created by
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pairing the current sensor image with the current steering direction, are inserted
into the bu�er of 200 patterns using the replacement strategy described above.
After this replacement process, one forward and one backward pass of the back-
propagation algorithm is performed on the 200 exemplars to update the network's
weights, using a learning rate of 0.01 and a momentum of 0.8. The entire process
is then repeated. Each cycle requires approximately 2.5 seconds on the three Sun
Sparcstations onboard the vehicle. One of the Sparcstation performs the sensor
image acquisition and preprocessing, the second implements the neural network
simulation, and the third takes care of communicating with the vehicle controller
and displaying system parameters for the human observer. The network requires
approximately 100 iterations through this digitize-replace-train cycle to learn to
drive in the domains that have been tested. At 2.5 seconds per cycle, training
takes approximately four minutes of human driving over a sample stretch of road.
During the training phase, the person drives at approximately the speed at which
the network will be tested, which ranges from 5 to 55 miles per hour.

4. Performance Improvement Using Transformations

The performance advantage this technique of transforming and bu�ering training
patterns o�ers over the more naive methods of training on real sensor data is
illustrated in Figure 11. This graph shows the vehicle's displacement from the
road center measured as three di�erent networks drove at 4 mph over a 100 meter
section of a single lane paved bike path which included a straight stretch and turns
to the left and right. The three networks were trained over a 150 meter stretch of
the path which was disjoint from the test section and which ended in an extended
right turn.

The �rst network, labeled \-trans -bu�", was trained using just the images
coming from the video camera. That is, during the training phase, an image was
digitized from the camera and fed into the network. One forward and backward
pass of back-propagation was performed on that training exemplar, and then the
process was repeated. The second network, labeled \+trans -bu�", was trained
using the following technique. An image was digitized from the camera and then
transformed 14 times to create 15 new training patterns as described above. A
forward and backwards pass of back-propagation was then performed on each of
these 15 training patterns and then the process was repeated. The third network,
labeled \+trans +bu�" was trained using the same transformation scheme as the
second network, but with the addition of the image bu�ering technique described
above to prevent overtraining on recent images.

Note that all three networks were presented with the same number of images.
The transformation and bu�ering schemes did not in
uence the quantity of data
the networks were trained on, only its distribution. The \-trans -bu�" network was
trained on closely spaced actual video images. The \+trans -bu�" network was
presented with 15 times fewer actual images, but its training set also contained 14
transformed images for every \real" one. The \+trans +bu�" network collected
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Figure 11: Vehicle displacement from the road center as the Navlab was driven by
networks trained using three di�erent techniques.

even fewer live images, since it performed a forward and backward pass through
its bu�er of 200 patterns before digitizing a new one.

The accuracy of each of the three networks was determined by manually mea-
suring the vehicle's lateral displacement relative to the road center as each network
drove. The network trained on only the current video image quickly drove o� the
right side of the road, as indicated by its rapidly increasing displacement from
the road center. The problem was that the network overlearned the right turn
at the end of training and became biased towards turning right. Because of the
increased diversity provided by the image transformation scheme, the second net-
work performed much better than the �rst. It was able to follow the entire test
stretch of road. However it still had a tendency to steer too much to the right,
as illustrated in the graph by the vehicle's positive displacement over most of the
test run. In fact, the mean position of the vehicle was 28.9cm right of the road
center during the test. The variability of the errors made by this network was
also quite large, as illustrated by the wide range of vehicle displacement in the
\+trans -bu�" graph. Quantitatively, the standard deviation of this network's
displacement was 62.7cm.

The addition of bu�ering previously encountered training patterns eliminated
the right bias in the third network, and also greatly reduced the magnitude of the
vehicle's displacement from the road center, as evidenced by the \+trans +bu�"
graph. While the third network drove, the average position of the vehicle was
2.7cm right of center, with a standard deviation of only 14.8cm. This represents
a 423% improvement in driving accuracy.

A separate test was performed to compare the steering accuracy of the network
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trained using both transformations and bu�ering with the steering accuracy of a
human driver. This test was performed over the same stretch of road as the previ-
ous one, however the road was less obscured by fallen leaves in this test, resulting
in better network performance. Over three runs, with the network driving at 5
miles per hour along the 100 meter test section of road, the average position of
the vehicle was 1.6cm right of center, with a standard deviation of 7.2cm. Under
human control, the average position of the vehicle was 4.0cm right of center, with
a standard deviation of 5.47cm. The average distance the vehicle was from the
road center while the person drove was 5.70cm. It appears that the human driver,
while more consistent than the network, had an inaccurate estimate of the vehi-
cle's centerline, and therefore drove slightly right of the road center. Studies of
human driving performance have found similar steady state errors and variances
in vehicle lateral position. Blaauw [2] found consistent displacements of up to 7cm
were not uncommon when people drove on highways. Also for highway driving,
Blaauw reports standard deviations in lateral error up to 16.6cm.

5. Results and Comparison

The competence of the ALVINN system is also demonstrate by the range of situ-
ations in which it has successfully driven.

The training on-the-
y scheme gives ALVINN a 
exibility which is novel
among autonomous navigation systems. It has allowed me to successfully train
individual networks to drive in a variety of situations, including a single-lane dirt
access road, a single-lane paved bicycle path, a two-lane suburban neighborhood
street, and a lined two-lane highway (See Figure 12). Using other sensor modali-
ties as input, including laser range images and laser re
ectance images, individual
ALVINN networks have been trained to follow roads in total darkness, to avoid
collisions in obstacle rich environments, and to follow alongside railroad tracks.
ALVINN networks have driven without intervention for distances of up to 22 miles.
In addition, since determining the steering direction from the input image merely
involves a forward sweep through the network, the system is able to process 15
images per second, allowing it to drive at up to 55 miles per hour. This is over
four times faster than any other sensor-based autonomous system using the same
processing hardware, has driven the Navlab [5] [10].

The level of 
exibility across driving situations exhibited by ALVINN would be
di�cult to achieve without learning. It would require the programmer to 1) deter-
mine what features are important for the particular driving domain, 2) program
detectors (using statistical or symbolic techniques) for �nding these important
features and 3) develop an algorithm for determining which direction to steer
from the location of the detected features. As a result, while hand programmed
systems have been developed to drive in some of the individual domains ALVINN
can handle [5] [10] [12] [8], none have duplicated ALVINN's 
exibility.

ALVINN is able to learn for each new domain what image features are im-
portant, how to detect them and how to use their position to steer the vehicle.
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Figure 12: Video images taken on three of the road types ALVINN modules have
been trained to handle. They are, from left to right, a single-lane dirt access road,
a single-lane paved bicycle path, and a lined two-lane highway.

Analysis of the hidden unit representations developed in di�erent driving situa-
tions shows that the network forms detectors for the image features which correlate
with the correct steering direction. When trained on multi-lane roads, the network
develops hidden unit feature detectors for the lines painted on the road, while in
single-lane driving situations, the detectors developed are sensitive to road edges
and road-shaped regions of similar intensity in the image. For a more detailed
analysis of ALVINN's internal representations see [14] [13].

This ability to utilize arbitrary image features can be problematic. This was
the case when ALVINN was trained to drive on a poorly de�ned dirt road with
a distinct ditch on its right side. The network had no problem learning and
then driving autonomously in one direction, but when driving the other way,
the network was erratic, swerving from one side of the road to the other. After
analyzing the network's hidden representation, the reason for its di�culty became
clear. Because of the poor distinction between the road and the non-road, the
network had developed only weak detectors for the road itself and instead relied
heavily on the position of the ditch to determine the direction to steer. When
tested in the opposite direction, the network was able to keep the vehicle on the
road using its weak road detectors but was unstable because the ditch it had
learned to look for on the right side was now on the left. Individual ALVINN
networks have a tendency to rely on any image feature consistently correlated
with the correct steering direction. Therefore, it is important to expose them to
a wide enough variety of situations during training so as to minimize the e�ects
of transient image features.

On the other hand, experience has shown that it is more e�cient to train sev-
eral domain speci�c networks for circumstances like one-lane vs. two-lane driv-
ing, instead training a single network for all situations. To prevent this network
speci�city from reducing ALVINN's generality, we are currently implementing
connectionist and non-connectionist techniques for combining networks trained
for di�erent driving situations. Using a simple rule-based priority system similar
to the subsumption architecture [3], we have combined a road following network
and an obstacle avoidance network. The road following network uses video cam-
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era input to follow a single-lane road. The obstacle avoidance network uses laser
range�nder images as input. It is trained to swerve appropriately to prevent a
collision when confronted with obstacles and to drive straight when the terrain
ahead is free of obstructions. The arbitration rule gives priority to the road fol-
lowing network when determining the steering direction, except when the obstacle
avoidance network outputs a sharp steering command. In this case, the urgency
of avoiding an imminent collision takes precedence over road following and the
steering direction is determined by the obstacle avoidance network. Together, the
two networks and the arbitration rule comprise a system capable of staying on
the road and swerving to prevent collisions.

To facilitate other rule-based arbitration techniques, we have adding to ALVINN
a non-connectionist module which maintains the vehicle's position on a map [6].
Knowing its map position allows ALVINN to use arbitration rules such as \when
on a stretch of two lane highway, rely primarily on the two lane highway net-
work". This symbolic mapping module also allows ALVINN to make high level,
goal-oriented decisions such as which way to turn at intersections and when to
stop at a predetermined destination.

Finally, we are experimenting with connectionist techniques, such as the task
decomposition architecture [16] and the meta-pi architecture [9], for combining
networks more seamlessly than is possible with symbolic rules. These connection-
ist arbitration techniques will enable ALVINN to combine outputs from networks
trained to perform the same task using di�erent sensor modalities and to decide
when a new expert must be trained to handle the current situation.

6. Discussion

A truly autonomous mobile vehicle must cope with a wide variety of driving situ-
ations and environmental conditions. As a result, it is crucial that an autonomous
navigation system possess the ability to adapt to novel domains. Supervised train-
ing of a connectionist network is one means of achieving this adaptability. But
teaching an arti�cial neural network to drive based on a person's driving behavior
presents a number of challenges. Prominent among these is the need to main-
tain su�cient variety in the training set to ensure that the network develops a
su�ciently general representation of the task. Two characteristics of real sensor
data collected as a person drives which make training set variety di�cult to main-
tain are temporal correlations and the limited range of situations encountered.
Extended intervals of nearly identical sensor input can bias a network's internal
representation and reduce later driving accuracy. The human trainer's high de-
gree of driving accuracy severely restricts the variety of situations covered by the
raw sensor data.

The techniques for training \on-the-
y" described in this chapter solve these
di�culties. The key idea underlying training on-the-
y is that a model of the
process generating the live training data can be used to augment the training set
with additional realistic patterns. By modeling both the imaging process and the
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steering behavior of the human driver, training on-the-
y generates patterns with
su�cient variety to allow arti�cial neural networks to learn a robust representation
of individual driving domains. The resulting networks are capable of driving
accurately in a wide range of situations.
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