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INTRODUCTION 

In addition to the capability to navigate from a point of origin to a given goal and 

avoiding all static and dynamic obstacles, a mobile robot must posses another two 

competencies: map building and localization in order to be useful.  

 

A mobile robot acquires information of its environment via the process of map 

building. Map building for mobile robots are commonly divided into occupancy grid 

and topological maps. Occupancy-grid maps seek to represent the geometric 

properties of the environment. Occupancy-grid mapping was first suggested by Elfes 

in 1987 and the idea was published in his Ph.D. thesis (A. Elfes, 1989) in 1989. 

Topological mapping was first introduced in 1985 as an alternative to the occupancy-

grid mapping by R. Chatila and J.-P. Laumond (R. Chatila, & J.-P. Laumond, 1985). 

Topological maps describe the connectivity of different locations in the environment.  

 

The pose of a mobile robot must be known at all times for it to navigation and build a 

map accurately. This is the problem of localization and it was first described in the 

late 1980’s by R. Smith et al (R. Smith et al, 1980). Some key algorithms for map 

building and localization will be discussed in this article. 

 

BACKGROUND 

Map building is the process of acquiring information of the environment via sensory 

data and representing the acquired information in a format that is comprehensible to 

the robot. The acquired map of the environment can be used by the robot to improve 

its performance in navigation.  
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Localization is the process of finding the pose of the robot in the environment. It is 

perhaps the most important competency that a mobile robot must possess. This is 

because the robot must know its pose in the environment before it can plan its path to 

the goal or follow a planned path towards the goal.  

 

In this article, two key algorithms for map building: occupancy-grid and topological 

mapping are discussed. The occupancy grid and topological maps are two different 

methodologies to represent the environment in a robot’s memory. Two key 

localization methods: Localization with Kalman filter and particle filter are also 

reviewed. 

 

MAP BUILDING 

As seen from the integrated algorithm from part I of the article, a mobile robot must 

be able to acquire maps of an unknown environment to achieve higher level of 

autonomy. Map building is the process where sensory information of the surrounding 

is made comprehensive to a mobile robot. In this section, two key approaches for map 

building: occupancy-grid and topological mapping are discussed.  

 

Occupancy-Grid Maps 

Occupancy-grid maps (H.P. Moravec, 1988; H.P. Moravec et al, 1989; A. Elfes, 1987, 

A. Elfes, 1989; S. Thrun et al, 2005) represent the environment as a tessellation of 

grid cells. Each of the grid cells corresponds to an area in the physical environment 

and holds an occupancy value which indicates the probability of whether the cell is 

occupied or free. The occupancy value of the ith grid cell at current time t will be 

denoted by pt,i. Note that pt,i must be within the range of 0 to 1 following the axioms 
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of probability. pt,i = [0,0.5) indicates the confidence level of a cell being empty where 

0 indicates absolute certainty that the cell is empty. pt,i = (0.5,1] indicates the 

confidence level of a cell being occupied where 1 indicates absolute certainty that the 

cell is occupied. pt,i = 0.5 indicates that the cell is an unexplored area.  

 

A robot does not have any knowledge of the world when it was first placed in an 

unknown environment. It is therefore intuitive to set pt,i = 0.5 for all i at time t = 0. 

The map is updated via the log odds (S. Thrun et al, 2005) representation of 

occupancy. The advantage of log odds representation is that it can avoid numerical 

instabilities for probability near 0 or 1. The ith grid cell that intercepts the sensor line 

of sight is updated according to 

 sensoritit lll += − ,1,      (1) 

where lt-1,i  is the log odds computed from the occupancy value of the cell at t-1. 
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lsensor = locc if the cell corresponds to the sensor measurement and lsensor = lfree if the 

range to the cell is shorter than the sensor measurement. The other cells in the map 

remain unchanged.  

 

Figure 1(a) illustrates the update process for the map. The cell that corresponds to the 

sensor measurement is shaded black and all the cells that intercept the sensor 

measurement beam are shaded white. Figure 1(b) shows a case where the sensor 

measurement equals to maximum sensor range and lsensor = lfree for all cells that 

intercepts the sensor beam. This is because it is assumed that no obstacle is detected if 
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the sensor measurement equals to maximum sensor range. locc and lfree are computed 

from 
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where pocc and pfree denote the probabilities of the sensor measurement correctly 

deducing whether a grid cell is occupied or empty. The two probabilities must add up 

to 1 and their values depend on the accuracy of the sensor. pocc and pfree will have 

values closer to 1 and 0 for an accurate sensor. The values of pocc and pfree have to be 

determined experimentally and remain constant in the map building process. 

 

            (a)                                   (b) 

Fig. 1. Updating an occupancy grid map (a) when an obstacle is detected (b) 
when a maximum range measurement is detected, i.e. it is assumed that in this 
case no obstacle is detected 
 

The occupancy value of a grid cell is easily recovered from 
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Figure 2 shows an occupancy grid map of the corridor along block EA level 3 in the 

Faculty of Engineering of the National University of Singapore (NUS) acquired with 
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a laser range finder. The black regions denote obstacles, white regions denote free 

space and grey regions denote unexplored areas. 

 

 
 

Fig. 2. Occupancy grid map of the corridor along block EA level 3 in the Faculty 
of Engineering of the National University of Singapore (NUS). 
 

Topological Maps 

Unlike the occupancy grid maps, topological maps (D. Kortenkamp et al, 1994; H. 

Choset, 1996; H. Choset et al, 1996) do not attempt to represent the geometric 

information of the environment. Instead, topological maps represent the environments 

as graphs. An example of the topological map is shown in Figure 3. List of significant 

features such as walls, corners, doors or corridors are represented as nodes mi and 

connectivity between adjacent features is represented as edges ujk. In many 

topological maps, distances between adjacent features are also represented by the 

edges connecting the nodes. The success of the topological maps depends greatly on 

the efficiency in features extraction. Examples of feature extraction algorithms can be 

found in (Martin David Adams, 1999; Sen Zhang et al, 2003; Jodo Xavier et al, 2005). 
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Fig. 3. Example of a topological map. The features are represented as nodes mi. 
The connectivity and distance between features are represented as edges ujk.  
 

Topological maps are better choice for mapping if memory space is a major concern. 

This is because less memory is required to store the nodes as compared to the large 

number of grid cells in occupancy grid maps. The advantage of less memory 

consumption for the topological map however comes with the tradeoff of being less 

accurate. This is because some important information such as precise location of the 

free spaces in the environment may not be represented in the maps. The limited 

accuracy of topological maps thus restricts the robot’s capability for fast and safe 

navigation. 

 

LOCALIZATION 

Most mobile robots localize their pose tx  with respect to a given map based on 

odometry readings. Unfortunately, wheel slippages and drifts cause incremental 

localization errors (J. Borenstein et al, 1995; J. Borenstein et al, 1996). These errors 

cause the mobile robot to lose track of its own pose and hence losing the ability to 

navigate autonomously from one given point in the map to another. The solution to 
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the localization problem is to make use of information of the environment from 

additional sensors. Examples of sensors used are laser range finder and sonar sensor 

that measure the distance between the robot and the nearest obstacles in the 

environment. The extended Kalman filter (EKF) and particle filter are two 

localization algorithms that use odometry and additional sensory data of the 

environment to localize a mobile robot. Both algorithms are probabilistic methods that 

allow uncertainties from the robot pose estimate and sensor readings to be accounted 

for in a principled way. 

 

Localization with Extended Kalman Filter 

EKF (John J. Leonard et al, 1991; A.Kelly, 1994; G. Welch et al, 1995; Martin David 

Adams, 1999; S. Thrun et al, 2005) is perhaps the most established algorithm for 

localization of mobile robots because of its robustness and efficiency. The EKF is a 

recursive algorithm for estimating the pose of the robot with noisy sensor readings. A 

key feature of the EKF is that it maintains a posterior belief )( txbel of the pose 

estimate, which follows a Gaussian distribution, represented by a mean tx  and 

covariance tP . The mean tx  represents the most likely pose of the robot at time t and 

covariance tP  represents the error covariance of this estimate. The EKF consists of 

two steps: the prediction and update steps. In the prediction step, the predicted belief 

)( txbel is first computed using a motion model which describes the state dynamics of 

the robot. )( txbel is subsequently transformed into )( txbel by incorporating the sensor 

measurements in the update step.  
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As mentioned above, the predicted belief )( txbel , which is represented by the 

predicted meantx and covariance tP , is computed from the prediction step given by 

( )t1-tt uxfx ,=         (5) 

t
T

tttt QFPFP += −1           (6) 

 
where (.)f  is the motion model of the mobile robot, F is the Jacobian of 

(.)f evaluated at 1−tx , tQ is the covariance of the motion model and tu  is the control 

data of the robot. 

 

)( txbel  is subsequently transformed into )( txbel  by incorporating the sensor 

measurementtz  into the update step of the EKF shown in Equations 7, 8 and 9.  
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tK , computed in Equation 7, is called the Kalman gain. It specifies the degree to 

which tz  should be incorporated into the new pose estimate. Equation 8 computestx  

by adjusting it in proportion to tK  and the deviation of thetz with the predicted 

measurement ),( mxh t . It is important to note that the sensor measurement 

T
ttt zzz ]...[ 21=  refers to coordinates of a set of observed landmarks instead of the 

raw sensor readings and the sensor measurement model (.)h  gives the predicted 

measurement from the given topological map m and tx . tH is the Jacobian of (.)h  

evaluated at 1−tx . Finally, the covariance tP  of the posterior belief )( txbel  is 

computed in Equation 9 by adjusting for the information gain resulting from the 

sensor measurements.  

 

(7) 
 

(8) 
 

(9) 
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Localization with Particle Filter 

In the recent years, there is an increasing interest in the use of particle filter (S. Thrun 

et al, 2001; C. Kwok et al, 2002; D. Fox et al, 2003; Ioannis M. Rekleitis, 2004; S. 

Thrun et al, 2005) over EKF for robot localization. This increased interest is likely 

due to four reasons. First, raw sensor measurements of the environment are used in 

particle filter localization where the EKF localization requires feature extraction. 

Second, the particle filter is more robust because unlike the EKF, it does not assume 

Gaussian distribution for the posterior belief )( txbel . Third, the particle filter is able 

to recover from localization failure. Localization failure occurs if the robot suddenly 

loses track of its pose during the localization process. Localization failure is also 

known as the kidnapped problem. Fourth, unlike the EKF there is no need to derive 

complicated Jacobians for the particle filter. 

 

The intuition behind the particle filter is to represent the posterior belief )( txbel  by a 

finite sample set of M weighted particles. This sample set is drawn according to 

)( txbel . The particles set is denoted by 

][]2[]1[ ,...,, M
tttt χχχξ =       (10) 

 
where Tm

t
m

t
m

t wx ][ ][][][ =χ  denotes the mth particle. Here, ][ m
tx is a random variable 

that represents a hypothesized state and ][ m
tw  is a non-negative value called the 

importance factor which represents the weight of each particle. Similar to the EKF, 

the particle filter consists of the prediction and update steps. In the prediction step, 

samples of the particles are drawn from a motion model of the robot to represent the 

predicted belief )( txbel . The particles are then weighted according to the sensor 

measurements in the update step. Finally, )( txbel is transformed into the posterior 
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belief )( txbel  by resampling the particles according to their weights. 

 
1. ∅== tt ξξ ; 

2. for m = 1 to M do 
3.      generate random sample of ][ m

tx from ),|( ][
1

m
ttt xuxp − ; 

4.      ),|( ][][ mxzpw m
tt

m
t = ; 

5.      Tm
t

m
t

m
t wx ][ ][][][ =χ ;        

6. end; 
7. for m = 1 to M do  
8.      draw ][ m

tχ from tξ  with probability proportional to ][]2[]1[ ,....,, M
ttt www ; 

9. end; 
 
 Table 1: Pseudo algorithm for mobile robot localization with particle filter 
 

Table 1 shows an iteration of the recursive particle filter algorithm for localization. 

The inputs to the particle filter are the set of particles representing the previous state 

belief 1−tξ , the most recent control actions tu  and measurement data tz . Line 3 is the 

prediction step that generates the hypothetical state ][ m
tx by sampling from the motion 

model ),|( ][
1

m
ttt xuxp −  of the robot. The set of particles obtained after M iterations 

represents )( txbel . Line 4 computes ][ m
tw from the sensor measurement model. The 

importance factor accounts for the mismatch between )( txbel  and )( txbel . Finally, 

the resampling process from line 7 to 9 draws with replacement M particles from the 

temporary settξ  with a probability proportional to the importance factors. The 

distribution of )( txbel is transformed into )( txbel by incorporating the importance 

factors in the resampling process. 

 

Figure 4(a) to (d) shows an implementation result of a robot localizing itself in a 

corridor. The particle set is initialized to the initial known pose of the robot show in 

Figure 4(a). The particles are initialized uniformly within a circle with radii 100mm 
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and the initial position of the robot is taken as the center. The orientation of the 

particles is also initialized uniformly within ±5o to the initial orientation of the robot. 

This is to eliminate possible errors in estimating the initial pose of the robot. Figure 

4(b) to 4(d) show that the error from the odometry grows as the robot travels a greater 

distance. The robot thinks that it is traveling in occupied space if it relied solely on the 

odometry readings and this is obviously wrong. It is apparent that the particle filter 

gives a more reasonable pose estimate because the robot is always moving within the 

free space.  

 

It was mentioned earlier that the particle filter is able to recover from localization 

failure. An example of localization failure is when the robot is pushed by human 

resulting in a mismatch between the true and estimated pose of the robot. Fortunately, 

the problem can be easily solved by observing the total weights of the filter after each 

iteration. Localization failures will cause sharp drops in the total weights of the 

particles. The particles are re-initialized uniformly in the free space after detecting a 

sharp drop in the total weights of the particles. The particles will eventually converge 

to the true pose of the robot. 

 

The particle filter is a powerful algorithm in solving the localization problem. 

However, it must be noted that the number of particles used to represent beliefs is an 

important parameter for efficiency of the particle filter in recovering from localization 

failures. A large size of particles is necessary to recover from localization failures in 

large environments and in many cases the maximum number particles is restricted by 

the available computing resources. This problem is also known as the curse of 

dimensionality. 
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Fig. 4. Implementation of the particle filter to solve the localization problem. 
Notice that the error from the odometry grows as the robot travels a greater 
distance. 
 

CONCLUSION  

A mobile robot has to possess three competencies to achieve full autonomy: 

navigation, map building and localization. Over the years, many algorithms have been 

proposed and implemented with notable success to give mobile robots all the three 

competencies. Some of the key algorithms such as the navigation function, roadmaps, 
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artificial potential field, vector field histogram, hybrid navigation and the integrated 

algorithm for navigation; occupancy grid and topological based mapping; as well as 

the Kalman filter and particle filter for localization are reviewed in both Part I and II 

of this article.  

 

FUTURE TRENDS 

While the navigation, map building and localization algorithms are implemented with 

notable success, the scale and structure of the environments for these algorithms to 

work are limited. Hence, the future challenges for mobile robot autonomy are in the 

implementations of the algorithms in larger scale and more complex environments 

such as the urban cities or jungles.  
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TERMS AND DEFINTIONS 
 
Odometry: A method to do position estimation for a wheeled vehicle during 
navigation by counting the number of revolutions taken by the wheels that are in 
contact with the ground. 
 
Recursive algorithm: It refers to a type of computer function that is applied within 
its own definition. The extended Kalman filter and particle filter are recursive 
algorithms because the outputs from the filters at the current time step are used as 
inputs in the next time step.  
 
Gaussian distribution: It is also known as normal distribution. It is a family of 
continuous probability distributions where each member of the family is described by 
two parameters: mean and variance. This form of distribution is used by the 
localization with extended Kalman filter algorithm to describe the posterior belief 
distribution of the robot pose. 
 
Jacobians: The Jacobian is a first-order partial derivatives of a function. Its 
importance lies in the fact that it represents the best linear approximation to a 
differentiable function near a given point. 
 
Posterior belief: It refers to the probability distribution of the robot pose estimate 
conditioned upon information such as control and sensor measurement data. The 
extended Kalman filter and particle filter are two different methods for computing the 
posterior belief. 
 
Predicted belief: It is also known as the prior belief. It refers to the probability 
distribution of the robot pose estimate interpreted from the known control data and in 
the absence of the sensor measurement data.  
 
Curse of dimensionality: This term was first used by Richard Bellman. It refers to 
the problem of exponential increase in volume associated with adding extra 
dimensions to a mathematical space.  

 
 
 


