Українська   Русский
DonNTU   Masters' portal

Abstract

Content

Introduction

Modern power is mainly based on non-renewable fossil primary energy sources. Such production and consumption of energy in addition to what is one of the major anthropogenic factors negatively affecting the environment,can not guarantee the sustainable development of world power in the long term. Different scenarios of human development suggest the need for extensive development of new renewable energy sources in the next decade, both because of the inevitable decrease in production and increase in the cost of oil, gas and coal, as well as for environmental reasons [1].

Considering the range of renewable energy sources can be classified by type of energy

  1. Mechanical energy (wind and water flows)
  2. Thermal and radiant energy (solar radiation and heat from the Earth)
  3. Chemical energy (the energy contained in the biomass) [2].

1. Theme urgency

Delegates of the Second Committee 67th Session of UN General Assembly adopted a resolution A/67/437/Add.9 Promotion of new and renewable energy sources. It is noted that at the present time, the share of new and renewable energy in the global energy mix is still low due to the high cost of these technologies and the lack of access to them. Just for Governments to create an enabling environment for the promotion and use of new and renewable sources of energy and more efficient use of energy [3].

pic1

Currently, a large number of electricity consumers located away from centralized power that requires the construction of long transmission lines, which in turn increases the losses. In connection with the development of alternative energy an opportunity to supplement the exiting infrastructure systems, decentralized generation of electricity and heat, which will help significantly reduce the losses due to transmission and transformation of electricity [5].

2. Goal and tasks of the research

The purpose of this study is: to consider modes of autonomous power supply systems based on renewable energy sources, to assess the feasibility and appropriateness of their use.

One of the most widely available and promising renewable energy is solar energy, allowing the individual to electrify remote objects from electrical networks [6]. Distribution of solar radiation can be estimated from the figure, 2.

pic2

Figure 2 — Map of the world printed with average illuminance [7]

There are two types of solar energy conversion – in the electricity and heat. In turn, the electrical installations are two basic types:

  1. solar energy heats water or other working fluid is vaporized, steam is sent to a turbine generator rotating;
  2. solar energy is converted directly into electricity using solar cells [8].

In turn, all solar cells on the basis of their actions fall into two classes. The first class includes solar cells, based on the external photoelectric effect – vacuum and gas–filled, for the second–semiconductor solar cells with a blocking layer, otherwise still called gating, which are based on the internal photoelectric effect. The latter include ferrous copper, selenium, germanium, silicon and other [9].

Widespread introduction of solar energy in space and on earth designers confronts the problem of assessing the efficiency of photovoltaic systems. You must be able to predict the siting power solar batteries (SB) changing under the influence of various environmental factors, to evaluate the behavior of photovoltaic cells in different modes robots. Predicting the behavior and reproduction characteristics of SE and SB carried out by simulation. Compared with experiment, mathematical modeling provides a fast, flexible and cheap way to test the PVC [10].

So in the master`s work represented an improved mathematical model of the solar module. This execution model in the software package MATLAB Simulink, foundation work was a model developed by Fedorov A. [16].

pic3

Figure 3 — Model of the PV module is implemented in the software package MATLAB Simulink

Realized model allows to capture a list of factors affecting the performance of the actual photovoltaic modules.

Modeling the influence of shadows arbitrary shape characteristics of solar cells allows us to estimate the power loss at different variants of shading. At partial shade of a single item or a group of a decrease in solar output due to the reduction of incoming light energy into an element and increasing domestic energy losses in the unlit side of the element. The paper shows the positive role of shunt diodes, they protect your battery life when one of the elements totally obscured [10].

pic4

Figure 4 — Simulation shading Sat 1 — Sat from 18 SE with shaded solar cells and shunt diodes 2 — Comparison of CVC partially shaded and shaded battery [10]

3. Review of literature, research and development

Research in the field of simulation of photovoltaic modules in the software package MATLAB Simulink shown in [5], [10-16]. The mathematical models of various configurations and modes of operation.

Conclusion

Process of energy production from renewable energy sources

Figure 5 — Process of energy production from renewable energy sources
(animation: number of frames:4, number of cycles:5, size: 154 кБ)

Development of technical and legal framework for renewable energy and sustainable growth trends cost of fuel and energy resources today determine the technical and economic benefits of power, using renewable energy resources. It is obvious that in the long term, these benefits will be increased by expanding the scope of the renewable energy and increasing its contribution to the global energy balance.

This master's work is not completed yet. Final completion: December 2014. The full text of the work and materials on the topic can be obtained from the author or his head after this date.

References

  1. Попель О.С., Туманов В.Л. Возобновляемые источники энергии: состояние и перспективы развития / Международный научный журнал Альтернативная энергетика и экология, АЭЭ, №2(46) (2007) – 135 с.
  2. Лукутин Б.В. Возобновляемая энергетика в децентрализованном электроснабжении: монография / Лукутин Б.В., Суржикова О.А., Шандрова Е.Б.. – М.: Энергоатомиздат, 2008. – 231 с.
  3. Оффициальный сайт Генеральной Асамблеи ООН [Web-site] - Access: http://www.un.org/ru/ga/second/67/second_res.shtml.
  4. Оффициальный сайт Верховного Совета Украины [Web-site] - Access: http://zakon4.rada.gov.ua/laws/show/575/97-вр.
  5. Федоров А.Ю., Левшов А.В. / Электроэнергетика, Раздел Светотехника и електротехника, (1) 2011 – 78 с.
  6. Петлеванная Е.В., Левшов А.В. Інформаційні управляючі системи та комп’ютерний моніторинг (ІУС-2011) / Матерiали II мiжнародної науково–технiчної конференцiї студентiв, аспiрантiв та молодих вчених. – Донецьк, ДонНТУ – 2011, Том 2, с. 132 – 136.
  7. Иллюстрированный справочник по Возобновляемой энергетике, INTERSOLARCENTER, Energie – 129 c.
  8. Голицын М.В. Альтернативные энергоносители / Голицын М.В., Голицын А.М., Пронина Н.В.; Отв.ред.Голицин Г.С. – М.: Наука, 2004. – 159с.
  9. Глиберман А.Я., Зайцева А.К. Кремниевые солнечные батареи. М – Л., Госэнергоиздат 1961. – 72 с.
  10. Фролкова Н.О. Моделирование солнечных батарей на основе различных полупроводников, Автореферат, Москва 2011г.
  11. Нгуен Минь Дык, Моделирование фотоэлектрического и ветроэнергетического модулей фотоэнергетической установки, V Международная студенческая электронная научная конференция
  12. Abdulkadir M., Samosir A.S. and Yatim A.H.M. Modeling and simulation based approach of photovoltaic system in simulink model, ARPN Journal of Engineering and Applied Sciences 616 - 623 pp.
  13. Tarak Salmi, Mounir Bouzguenda, Adel Gastli, Ahmed Masmoudi Matlab/Simulink Based Modelling of Solar Photovoltaic Cell, International Journal of Renewable Energy Research
  14. Savita Nema, R.K. Nema, Gayatri  Agnihotri Matlab/simulink based study of photovoltaic cells/modules/array and their experimental verification, International Journal of Energy and Environment
  15. Soumyadeep Ray , Sushree Subhadarsini Harmonic reduction technique using multilevel inverter in photo voltaic system with MPPT, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 2013.
  16. Левшов А.В., Федоров А.Ю., Молодиченко А.В. Математическое моделирование фотоэлектрических солнечных элементов, Научные труды Донецкого национального технического университета, №11(186), 2011.
  17. Виссарионов В.И., Дерюгина Г.В., Кузнецова В.А., Малинин Н.К., СОЛНЕЧНАЯ ЭНЕРГЕТИКА: Учебное пособие для вузов / Под ред. Виссарионов В.И. – М.:Издательский дом МЭИ, 2008. – 317 с. .