Реферат по теме выпускной работы
Содержание
- Введение
- 1.1 Мотивация темы работы
- 1.2 Цель, объект и предмет исследования
- 1.3 Предполагаемая научная новизна
- 1.4 Планируемые практические результаты
- 2. Общая структура распознавания лиц
- 2.1 Метод Виолы-Джонса
- 2.2 Метод гибкого сравнения на графах (Elastic graph matching)
- 2.3 Фильтр Габора
- 3 Основные проблемы систем распознавания лиц
- Выводы
- Список использованной литературы
Введение
Интерес к процессам идентификации и аутентификации личности в современном мире набирает все возрастающую практическую потребность: от систем охраны и верификации банковских карточек до криминалистической экспертизы и идентификации преступников при рецидиве. Поскольку, одним из однозначно различимых критериев личности, является человеческое лицо, то в аспекте идентификации (а позже, и аутентификации) личности следует понимать процедуру динамического распознавания лиц.
Задача эффективного поиска и идентификации человеческого лица, не является для компьютерных систем тривиальной и вполне очевидной для разработчиков специализированного программного обеспечения. Работа со слабоконтрастными объектами (с точки зрения восприятия компьютерной системой человеческого лица, в отличие от естественной идентификации лица человеческим глазом) является наиболее значимой для развития искусственного интеллекта (ИИ), делающей акцент на системах компьютерного (кибернетического) зрения, которые кроме процедур распознавания обеспечивают кодирование/декодирование и хранение цифровых изображений лиц. Такие системы можно рассматривать как в свете классической проблемы восприятия, так и в свете новых подходов [1] к распознаванию объектов.
1.1 Мотивация темы работы
Большую часть информации человек получает благодаря зрению. Отсюда развитие технологий компьютерного зрения и распознавания объектов, является наиболее значимой для развития искусственного интеллекта (ИИ), которое также является одним из основных предназначений программирования.
Направление распознавания лиц же является частной ветвью в технологии распознавании объектов. Поэтому, развитие данного направления неизменно приведет к развитию всей технологии распознавания объектов.
1.2 Цель, объект и предмет исследования
Целью магистерской работы является создание системы, которая динамически будет считывать и распознавать антропологические признаки лица, сравнивать их с динамической базой данных, чтобы идентифицировать личность.
Объект исследования: разработка системы идентификации личности.
Предмет исследования: объединение методов распознавания лиц с методами постбинарного компьютинга для повышения точности идентификации личности.
1.3 Предполагаемая научная новизна
Повышение быстродействия и точности метода распознания лиц путем использования методов постбинарного компьютинга.
1.4 Планируемые практические результаты
Для экспериментальной оценки полученных теоретических результатов будет разработана Система динамического распознавания антропологических признаков лица и сравнение их с динамической базой данных с целью идентификации личности. Разработка данной системы будет включать в себя создание следующих элементов:
- Алгоритм поиска лица на изображении для дальнейшего уменьшения анализируемой области изображения;
- Алгоритм вычисления антропометрических признаков лица;
- Алгоритм сравнения этих признаков лица c имеющимися в базе данных;
- Базу данных с информацией о людях и данными для их идентификации;
- Структуру данных признаков лица для их дальнейшего хранения;
- Внедрение методов постбинарного компьютинга.
Также будет создана база данных с изображениями лиц для проверки качественных параметров (точность, скорость и тд.) системы распознания.
2. Общая структура распознавания лиц
Несмотря на большое разнообразие алгоритмов распознавания лиц, можно выделить общую структуру данного процесса [2], которая представлена на рис. 1.
На первом этапе производится обнаружение и локализация лица на изображении (наиболее эффективным является использование метода Виолы-Джонса). Слежение подразумевает более упрощенные способы локализации лица (т. к. лицо к данному моменту однозначно определено) на последующих кадрах непрерывного видео.
На втором этапе производится выравнивание изображения в найденной области (геометрическое и яркостное преобразование, применение фильтров). Вычисление и сравнение признаков варьируется между методами, и при этом все сводится к определенному сравнению вычисленных признаков с заложенными в базу данных эталонами. В данной работе будет также рассмотрено использование метода гибкого сравнения на графах.
2.1 Метод Виолы-Джонса
В методе Виолы-Джонса используется интегральное представление изображения – матрица, которая совпадает по размерам с исходной и в каждом ее элементе хранится сумма всех элементов, находящихся левее и выше данного [3].
Элементы представлены в матричном виде и рассчитываются по следующей формуле (1):
, где i(x', y') — яркость пикселя исходного изображения.
Таким образом, каждый элемент I(x, y) интегрального изображения содержит в себе сумму интенсивности пикселей в прямоугольнике от (0, 0) до (x', y').
Формирование интегрального изображения занимает линейное время, пропорциональное числу пикселей исходного изображения, и осуществляется за один проход. Расчет интегрального изображения I можно производить по рекуррентной формуле (2):
Важнейшим достоинством интегрального представления изображения является возможность быстрого вычисления суммы пикселей произвольного прямоугольника (3), а также любой другой фигуры, которую можно аппроксимировать несколькими прямоугольниками.
Для описания искомых объектов (лицо, руки, или пр. предметы) используются каскады из признаков. Сам по себе каскад Хаара — это набор примитивов (рис. 2), для которых считается их свертка с изображением. Используются самые простые примитивы, состоящих из прямоугольников и имеющих всего два уровня, +1 и –1. При этом каждый прямоугольник используется несколько раз разного размера. Под сверткой тут подразумевается s = X – Y, где Y — сумма элементов изображения в темной области, а X — сумма элементов изображения в светлой области.
Такие свертки призваны структурировать информацию об объекте: например, в работе [6] показано что, для центра лица человека будет всегда отрицательная свертка, пример получения которой показан на рис. 3.
2.2 Метод гибкого сравнения на графах (Elastic graph matching)
Суть метода сводится к эластичному сопоставлению графов, описывающих изображения лиц [2, 5]. Лица представлены в виде графов со взвешенными вершинами и ребрами. На этапе распознавания один из графов — эталонный — остается неизменным, в то время как другой деформируется с целью наилучшей подгонки к первому. В подобных системах распознавания графы могут представлять собой как прямоугольную решетку, так и структуру, образованную характерными (антропометрическими) точками лица (рис. 4). В вершинах графа вычисляются значения признаков, чаще всего используют комплексные значения фильтров Габора или их упорядоченных наборов (рис. 5) — Габоровских вейвлет (строи Габора), которые вычисляются в некоторой локальной области вершины графа локально путем свертки значений яркости пикселей с фильтрами Габора (рис. 6).
Ребра графа взвешиваются расстояниями между смежными вершинами. Различие (расстояние, дискриминационная характеристика) между двумя графами вычисляется при помощи некоторой ценовой функции деформации, учитывающей как различие между значениями признаков, вычисленными в вершинах, так и степень деформации ребер графа.
Деформация графа происходит путем смещения каждой из его вершин на некоторое расстояние в определенных направлениях относительно ее исходного местоположения и выбора такой ее позиции, при которой разница между значениями признаков (откликов фильтров Габора) в вершине деформируемого графа и соответствующей ей вершине эталонного графа будет минимальной. Данная операция выполняется поочередно для всех вершин графа до тех пор, пока не будет достигнуто наименьшее суммарное различие между признаками деформируемого и эталонного графов. Значение ценовой функции деформации при таком положении деформируемого графа и будет являться мерой различия между входным изображением лица и эталонным графом. Данная «релаксационная» процедура деформации должна выполняться для всех эталонных лиц, заложенных в базу данных системы. Результат распознавания системы — эталон с наилучшим значением ценовой функции деформации (рис 7).
В отдельных публикациях указывается 95-97%-ая эффективность распознавания даже при наличии различных эмоциональных выражениях и изменении ракурса лица до 15°. Однако разработчики систем эластичного сравнения на графах ссылаются на высокую вычислительную стоимость данного подхода. Например, для сравнения входного изображения лица с 87 эталонными тратилось приблизительно 25 секунд при работе на параллельной ЭВМ с 23 транспьютерами [4]. В других публикациях по данной тематике время либо не указывается, либо говорится, что оно велико.
К недостаткам данного метода относится высокая вычислительная сложность процедуры распознавания, а также низкая технологичность при запоминании новых эталонов и линейная зависимость времени работы от размера базы компьютерного изображения лица.
2.3 Фильтр Габора
Фильтр Габора – линейный электронный фильтр, импульсная переходная характеристика которого определяется в виде гармонической функции, помноженной на гауссиан[13].
Двухмерный фильтр Габора имеет мнимую и действительную часть. Действительная часть фильтра представлена формулой (4), в мнимой части косинус меняется на синус. Графически функция выглядит как гармоническая функция, ограниченная гауссианой.
, где x'=x cosθ+y sinθ; y'=-x sinθ+y cosθ; x, y – координаты ядра в заранее заданных пределах; λ – период ядра в пикселях; θ – наклон ядра; σ – стандартное отклонение Гаусового ядра; ψ – смещение фазы ядра; γ – сжатие Гауссиана.
Как видно данный фильтр имеет параметр наклона θ, что позволяет задать углы искомых краев. Сжатие γ, можно ее определить, как погрешность находимых краев, закругление; чем этот параметр меньше, тем прямее будут находится линии. Этот параметр не следует завышать, так как при этом наклона θ теряет влияние. Таким образом, чтобы выделить все края на лице (относительно круглом объекте), применим фильтр Габора с различными углами наклона ядра и объединить результаты некоторой функцией (операцией).
В результате фильтрации получаем матрицу с положительными и отрицательными элементами. Для получения итоговой маски принимаем, что все отрицательные элементы равны 0 (белый), а положительные 1 (255, черный).
3. Основные проблемы систем распознавания лиц
Основные проблемы [4, 7], связанные с разработкой систем распознавания лиц представлены на рис. 8, 9.
С целью оценки эффективности предложенных методов распознавания лиц, агентство DARPA и исследовательская лаборатория армии США разработали программу FERET (FacE REcognition Technology) [8].
В масштабных тестах программы FERET принимали участие алгоритмы, основанные на гибком сравнении на графах и всевозможные модификации метода главных компонент (PCA). Эффективность всех алгоритмов была примерно одинаковой. В этой связи трудно или даже невозможно провести четкие различия между ними (особенно если согласовать даты тестирования).
Для фронтальных изображений, сделанных в один и тот же день, приемлемая точность распознавания, как правило, составляет 95%. Для изображений, сделанных различными средствами при разном освещении, точность, как правило, падает до 80%. Для изображений, сделанных с разницей в год, точность распознавания составила примерно 50%. При этом стоит заметить, что 50% — это более чем приемлемая точность работы системы подобного рода.
Ежегодно FERET публикует отчет о сравнительном испытании современных систем распознавания лиц [8] на базе лиц более одного миллиона. При этом в последних отчетах не раскрываются принципы построения систем распознавания, а публикуются только результаты работы коммерческих систем. На сегодняшний день лидирующей является система NeoFace [10] разработанная компанией NEC.
Выводы
Компьютерное зрение — развивающаяся отрасль программирования, но при этом востребована и имеет большой спектр применения. Функцию идентификации людей на фотографиях активно используют в программном обеспечении для управления фотоальбомами (Picasa, iPhoto и др.). Скомбинировав ее с реальными параметрами, можно составлять альбомы по отдельному человеку. Идентификация также находит свое применение в системах безопасности, например, при распознавании сотрудников объекта (учреждения).
При разработке программного обеспечения данного проекта идентификация личности до конца не реализована, однако выполнены нахождение лица и распознавание части признаков с помощью всего двух параллельных вейвлет Габора. С увеличением ряда фильтров и калибровки их параметров, возможны нахождение большего числа признаков и отсечки шумов. На основе полученных точек также появится возможность построения графа для выполнения сравнительного анализа и идентификации личности.
Основными трудностями на данном этапе выполнения проекта является настройка параметров фильтра Габора и разработка алгоритмов построения и сравнения графов.
В дальнейшем планируется использование средств и методов постбинарного компьютинга [11, 12] для повышения точности вычислений. Так, например, некоторые помехи можно обозначать как неопределенность, вследствие чего помехи не будут просто отбрасываться, а сохранятся как возможные особенности лица.
При написании данного реферата магистерская работа еще не завершена. Окончательное завершение: июль 2017 года. Полный текст работы и материалы по теме могут быть получены у автора или его руководителя после указанной даты.
Список использованной литературы
- Технология распознавания лиц / Data Систем. Товары и технологии XXI. [Электронный ресурс]. — Режим доступа: http://hardbro-ker.ru/pages/recognition. — Заглавие с экрана.
- Коломиец В. Анализ существующих подходов к распознаванию лиц. [Электронный ресурс] / Блог компании Синезис. — Режим доступа: http://habrahabr.ru/company/synesis/blog/238129.
- OpenCV шаг за шагом. Интегральное изображение. [Электронный ресурс]. — Режим доступа: http://robocraft.ru/blog/computervision/53-6.html
- Lades М. Distortion Invariant Object Recognition in the Dynamic Link Architecture. [Электронный ресурс] / Martin Lades, Jan C. Vorbruggen, Joachim Buhmann, Jorg Lange, Christoph v.d. Malsburg, Rolf P. Wurtz, Wolfgang Konen. — IEEE Transactions on Computers, vol. 42, No. 3, March 1993. — Режим доступа: http://www.cse.psu.edu/~rtc12/CSE597E/papers/objrecLadesMarlsberg93.pdf.
- Grother Р. Face Recognition Vendor Test (FRVT). Performance of Face Identification Algorithms. / Patrick Grother, Mei Ngan. — Information Access Division National Institute of Standards and Technology. — May 26, 2014 — р. 138.
- Мальцев А. Использование каскада Хаара для сравнения изображений [Электронный ресурс] / Мальцев Антон. — Режим доступа: https://habrahabr.ru/post/198338/. — Заглавие с экрана.
- Face Recognition [Электронный ресурс] / NSTC Subcommittee on Biometrics and Identity Management Room. — 7 August, 2006. — Режим доступа: http://www.biometrics.gov/documents/.
- Face Recognition Technology (FERET). Instructions on getting FERET database [Электронный ресурс]. / National Institute of Standards and Technology's web site. — Режим доступа: http://www.nist.gov/itl/iad/ig/feret.cfm.
- Fast and robust face detection and tracking: mc-jesus/face_detect_n_track. [Электронный ресурс]. — Режим доступа: https://github.com/mc-jesus/face_detect_n_track.
- NeoFace® Watch Generate Real-time Alerts Using Highly Accurate Face Recognition Technology. [Электронный ресурс]. / NEC Corporation of America, 2013. — Режим доступа: https://www.necam.com/docs/?id=c8a08fd5-e79c-4f00-9f37-9919318cc772.
- Аноприенко А. Я. Постбинарный компьютинг и интервальные вычисления в контексте кодо-логической эволюции. / А. Я. Аноприенко, С. В. Иваница — Донецк, ДонНТУ, УНИТЕХ, 2011. — 248 с
- Аноприенко А. Я. Тетралогика, тетравычисления и ноокомпьютинг. Исследования 2010–2012. / А. Я. Аноприенко, С. В. Иваница — Донецк: ДонНТУ, Технопарк ДонНТУ УНИТЕХ, 2012. — 308 с.
- Фильтр Габора [Электронный ресурс]. / Википедия – свободная энциклопедия — Режим доступа:: https://ru.wikipedia.org/wiki/Фильтр_Габора