Автор:Xia Yuanqing , Li Shengfei
Автор перевода: А.В.Цмыкайло
Источник:http://www.learnengineering.org
Генераторы являются рабочей лошадкой отрасли электрогенерации. Она способна генерировать мощность переменного тока на определенной частоте. Они также называются синхронными генераторами. Это видео дает подробное и иллюстративное введение в работу генераторов.
Электричество производится в генераторах электромагнитной индукцией. Чтобы генерировать электричество в катушке, катушка должна вращаться относительно магнитного поля, или магнитное поле должно вращаться относительно катушки.
В случае генераторов используется последний подход. Причина поворотного подхода с магнитной подачей будет обсуждаться на предстоящих сессиях.
Катушки ротора и арматуры являются 2 основными частями генератора переменного тока. Ротор создает вращающееся магнитное поле. Арматурные катушки являются стационарными, а вращающийся магнитный поток, связанный с ротором, индуцирует электричество в катушках якоря.
Вид ротора, показанный здесь, известен как ротор соленосного полюса . Чтобы получить более полное представление о его работе, рассмотрим ротор с четырьмя полюсами. Катушки ротора возбуждаются источником питания постоянного тока. Магнитное поле, созданное вокруг него, будет таким, как показано.
Ротор вращается с помощью первичного двигателя. Это приводит к тому, что поток ротора также вращается вместе с ним с той же скоростью.
Такой вращающийся магнитный поток теперь пересекает катушки якоря, которые установлены вокруг ротора. Это создаст переменную ЭДС через обмотку.
Поскольку 4-полюсный ротор имеет 2 пары полюса NS, когда ротор поворачивается на пол-оборота, индуцированная ЭДС занимает один полный цикл. Поэтому ясно, что частота индуцированной ЭДС прямо пропорциональна числу полюсов и скорости вращения ротора. Нетрудно установить, что частота индуцированных ЭДС f (Гц), скорость вращения ротора N (об / мин) и число полюсов P связаны следующим соотношением.
Из этого соотношения ясно, что частота произведенной электроэнергии синхронизирована с механической скоростью вращения.
Для создания трехфазного переменного тока в обмотку статора помещается еще 2 таких катушки якоря, которые имеют разность фаз 120 градусов с первой.
Обычно один конец этих трех катушек соединен звездой, а с других концов - трехфазное электричество. Нейтральный кабель может быть нарисован от конца, соединенного звездой.
Из приведенного выше уравнения видно, что для производства электричества на 60 Гц 4-полюсный ротор должен работать со скоростью 1800 об / мин. Такой огромный RPM вызовет огромную центробежную силу на полюсах ротора, и он может выйти из строя механически сверхурочно.
Таким образом, характерные полюсные роторы обычно имеют 10-40 полюсов; что требует более низких оборотов. Или роторные полюсные роторы используются, когда первичный двигатель вращается с относительно низкой скоростью (120-400 об / мин), например, с водяными турбинами и двигателями IC.
Ядро полюса используется для эффективного переноса магнитного потока, и они изготовлены из довольно толстой стальной пластинки. Такая изолированная пластина уменьшает потери энергии из-за образования вихревого тока. На стороне статора также используется основная пластинка для усиления переноса магнитного потока.
Постоянный ток подается на ротор через пару колец скольжения. Именно по этой причине в генераторе переменного тока используется подход с вращающимся магнитным полем. Если бы использовался метод вращающейся катушки, кольца скольжения должны были быть установлены вместе с катушками якоря для сбора электричества. Но перенос такого высоковольтного электричества через проскальзывающее кольцо довольно непрактичен. Вполне возможно передавать ток возбуждения постоянного тока низкого напряжения через кольца скольжения.
Этот постоянный ток подается либо от внешнего источника, либо от небольшого генератора постоянного тока, который установлен на одном и том же первичном двигателе. Такие генераторы называются самовозбужденными.
С изменением выходного напряжения клеммы генератора нагрузки будет изменяться. Желательно поддерживать напряжение на клемме в заданном пределе. Автоматический регулятор напряжения помогает в достижении этого. Регулирование напряжения может быть легко достигнуто путем управления полевым током. Если напряжение на клеммах ниже желаемого предела, AVR увеличивает ток возбуждения, таким образом, напряженность поля. Это приведет к увеличению напряжения на клеммах. Если напряжение на клеммах ниже указанного предела, выполняется обратное.