Авторы: Бубенчиков А.А., Помогалова Е.В., Жданова В.А., Ковалев Г.А.
Источник: Разработка алгоритма расчета аэродинамических сил действующих на криволинейный контур на режиме отрывного обтекания с целью выбора конструкции ротора Савониуса / Международный научный журнал Молодой ученый
, Спецвыпуск кафедры Электроснабжения промышленных предприятий ОмГТУ
– № 22(3), 2016, с. 20–24 – https://moluch.ru
Потребление энергии, а вместе с ним и ее стоимость увеличиваются во всем мире, и наша страна здесь не исключение. Но ресурсы планеты истощаются, все большую тревогу вызывает состояние экологии. Вот по чему постоянно растет интерес к нетрадиционным, экологически чистым источникам энергии — ветру.
В настоящее время наиболее развивающейся технологией использования возобновляемых источников энергии является ветроэнергетика. Ветроэнергетика является одним из приоритетных направлений развития отечественной энергетики. Это отрасль энергетики, специализирующаяся на преобразовании кинетической энергиивоздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрическойэнергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.
Актуальность развития ветроэнергетики обусловлена следующими факторами:
Интерес к развитию ветроэнергетики объясняется следующими факторами:
В 1931 г. Савониус предложил конструкцию вертикально-осевого ротора с S-образной формой лопастей. Несмотря на малый коэффициент полезного действия, данный ротор представляет несомненный практический интерес. Экспериментальному исследованию ротора Савониуса посвящено много работ. Наиболее полны результаты приведены в работе Моди Фернандо [2]. Ротор Савониуса – это самые тихоходные установки, и как следствие имеют низкий КИЭВ. Функцию лопастей выполняют две цилиндрические поверхности. Вращающий момент создается благодаря различному сопротивлению, оказываемому воздушному потоку лопастями ротора. Для ротора Савониуса присущи большие пусковые крутящие моменты, работа при относительно низких скоростях ветрах (3–5 м/сек) и относительно высокая технологичность производства. Недостатками ротора Савониуса являются:
Из существующих типов роторов Савониуса наиболее распространенными являются замкнутые и щелевые с двумя и тремя лопастями. Роторы Савониуса состоят из двух или трех полуцилиндров.
Разница в сопротивлении потоку ветра полуцилиндров создает крутящий момент. И хотя они недорогие и просты в изготовлении по сравнению с другими типами турбин, тем не менее, они имеют серьезные недостатки. Роторы Савониуса требуют не только много материала для изготовления лопастей на единицу площади, ометаемой ротором, но и коэффициент использования энергии ветра CP (коэффициент мощности) у них мал по сравнению с остальными ветроэнергетическими установками.
Преимущество — большой момент трогания. Так же они не нуждается в устройствах ориентирования по ветру, что сильно упрощает конструкцию; небольшая за- нимаемая площадь. На сегодняшний день роторы Саво- ниуса производятся в диапазоне мощностей до 5 кВт [3]. Также можно использовать в качестве анемометров, измеряющих скорость ветрового потока, а также в качестве стартеров для больших ветротурбин.
Все существующие ветроустановки (ВЭУ) преобразуют энергию ветра в механическую энергию с помощью ветроприемного устройства (ветроколеса). Главным элементом этого устройства являются лопасти, которые при воздействии на них воздушного потока создают вращающий момент. Поэтому эффективность любой ветроустановки будет зависеть от количества лопастей, а также от их формы.
В ветротурбинах этого типа ветровой поток оказывает силовое воздействие по направлению своего движения на поверхность лопастей ветроколеса таким же образом, как ветер действует на парус, заставляя плыть лодку. Из этого можно сделать простой вывод о том, что поверхности, на которые ветровой поток оказывает воздействие, не могут двигаться быстрее самого ветрового потока.
Основные принципы аэродинамики:
Рабочие лопатки ветротурбины могут быть:
В качестве профиля лопастей выбирается симметричный аэродинамический профиль типа ЦАГИ, NACA и т.д. с известными аэродинамическими характеристиками [4].
Для аэродинамического расчёта должны быть заданы [5]:
Порядок расчёта представлен на рис. 2. Полный расчёт аэродинамических сил со всеми формулами представлен в работах Кривцова В. С. И др. [5]. Данный метод построен на представлении силы, действующей на ветроколесо в направлении ветра, как проекции на направлении ветра реакции от суммарного воздействия на каждую элементарную лопасть подъёмной силы и силы аэродинамического сопротивления профиля. Коэффициенты подъёмной силы Суa и силы сопротивления Сха в зависимости от угла атаки в скоростной системе координат задаются в виде исходных данных. По данному методы сила, направленная по потоку, может быть выражена через двойной интеграл по переменным:
В результате этого получаем зависимости коэффициентов мощности и момента от коэффициента быстроходности [6–8].
Этот тип турбин с точки зрения их стоимостной эффективности не оправдывает себя, за исключением случаев с очень низкой мощностью для производства электроэ нергии, и в дальнейшем они будут рассматриваться в качестве вспомогательных роторов для обеспечения стартового крутящего момента для роторов Дарье.
Список использованных источников: