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Abstract Along with the improvement of electrical

equipment reliability, people’s unsafe behaviors and

human errors have become one of main sources of risks in

power systems. However, there is no comprehensive study

on human factors and human reliability analysis in power

systems. In allusion to this situation, this paper attempts to

analyze the impact of human factors on power system

reliability. First, this paper introduces current situation of

human factors in power systems and the latest research

progress in this field. Several analysis methods are pro-

posed according to specified situations, and these methods

are verified by some power system practical cases. On this

base, this paper illustrates how human factors affect power

system operation reliability from 2 typical aspects:

imperfect maintenance caused by human errors, and impact

of human factors on emergency dispatch operation and

power system cascading failure. Finally, based on infor-

mation decision and action in crew (IDAC), a novel dis-

patcher training evaluation simulation system (DTESS) is

established, which can incorporate all influencing factors.

Once fully developed, DTESS can be used to simulate

dispatchers’ response when encountering an initial event,

and improve power system dispatching reliability.

Keywords Human factors modeling, Human reliability

analysis, Power system reliability, Imperfect maintenance,

Emergency dispatch operation, Dispatcher training

evaluation simulation system (DTESS)

1 Introduction

Electrical energy is the basic resources of national

economy and people’s life. Power systems play a key role

in power generation and transmission. In the past few

decades, power systems have enormously expanded in

scale and become more complex in structure. As a result,

reliability is becoming an important issue. With the

development of smart grid, electrical equipment reliability

and automation technology have been improved on large

scale. However, power systems cannot operate without

human by far, and people’s unsafe behaviors and human

errors can have a great impact on power systems [1]. To

further improve power system reliability, it is necessary

take human factors into consideration.
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Through analyzing major incidents of power systems in

last decades, it can be seen that human factors made sig-

nificant contributions to these failures [2]. Human errors

are identified as one of the main causes of the blackout in

North American in August 2003 [3] and the Italian

blackout in September 2003 [4]. Human errors could occur

in any situations involving people, such as power system

operation, electrical equipment maintenance and power

system dispatching [5]. Although we gradually realize the

importance of human factors in power systems, there are

few researches in this area.

For better analysis of human factors’ impact on power

system reliability, we should figure out human error

mechanism and recognize how human errors occur. Proper

analysis methods are necessary, especially for quantitative

assessment. Furthermore we need to demonstrate the

influence of human factors on power system from several

main aspects. After this, we could obtain some measures to

improve human operational reliability.

In this paper we make a comprehensive introduction of

human errors and some common accidents resulting from

human factors. According to specific operation scenarios,

we establish several models of human factors, and propose

corresponding methods for human reliability analysis

(HRA). These methods are verified by some power system

practical cases. On this basis, we establish a modified

maintenance model considering imperfect maintenance

caused by human errors. Furthermore, the influence of

human factors on dispatching operation and power system

cascading failure are analyzed through IEEE 24-bus test

system. Finally, a novel Dispatcher Training Evaluation

Simulation System based on information decision and

action in crew (IDAC) is established, which can consider

all the influencing factors. Once fully developed, it can be

used for dispatcher dynamic assessment in order to find out

operators’ shortcomings and improve power system dis-

patching reliability.

2 Human errors and human factors in power
systems

Human errors can be defined as any human actions, both

cognitive and physical, that potentially or actually result in

negative effects on system’s normal functions [6]. As

power systems become more complex, human operators

are supposed to work in various situations, and they may

encounter all kinds of emergencies. If human behaviors

exceed an acceptable limit, it could lead to a disaster.

The final report on August 14, 2003 blackout in the

United States and Canada shows dispatchers’ lack of

monitoring of grid state is an important cause leading to

cascading failure [3]. In the 5.25 Moscow blackout,

dispatchers failed to take measures after a large number of

tripping, which caused the accident to expand [7]. On May

7, 2004, Golmud power grid split from main grid due to

substation personnel’s fault action on protection device. On

April 1, 2005, operation personal’s misoperation resulted in

power outage of 220 kV Lingyuan substation.

Some of these accidents are attributed to human errors,

however we seldom try to investigate the cause of human

errors. Human error is not a cause, but a consequence,

which is shaped and provoked by the upstream factors [8].

Operators’ actions in power systems can be affected by

various factors, like external environment, complexity of

operation task, operators’ knowledge and experience, and

so on. We consider all these factors that may cause human

errors as human factors. In some researches, performance

influencing factors (PIFs) and performance shaping factors

(PSFs) [9] are used to describe human factors. PIFs and

PSFs are usually classified according to various standards

and purposes. Reference [10] proposed a data-informed

PIF hierarchy for human reliability analysis, which consists

of five categories: organization related, time related, person

related, situation related and machine related factors.

Through investigation we can see that human operation

could be affected by many factors in power systems, such

as task complexity, operation period, experience, physical

state and so on. In different situations, the dominating

factors that have the greatest influence on human reliability

may be different. Therefore, it is important to determine

the exact PIFs according to actual situations.

3 Human factors modeling and HRA methods
in power systems

It is widely recognized that human errors could not be

avoided completely. However, we can take measures to

reduce human error probability. Human reliability is the

opposite concept of human error. As an essential part of

probabilistic safety assessment (PSA), HRA has been

widely researched in many fields which have higher

requirement on reliability, as in nuclear power plant and

aerospace [11]. Qualitative and quantitative HRA could be

used in system design, operation and optimization in order

to improve human reliability. Nevertheless, in the aspect of

power systems, there are very few studies about HRA.

With the development of HRA, many methodologies are

established to analyze human errors, such technique for

human error rate prediction (THERP) [12], cognitive reli-

ability and error analysis method (CREAM) [13], human

error assessment and reduction technique (HEART) [14], a

technique for human error analysis (ATHEANA) [15].

Moreover in some references, human reliability is assessed

using a Markov model with a constant transition rate for
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human error [16, 17]. In order to recognize personals’

cognitive process when dealing with system failures, sev-

eral dynamic HRA methods are proposed, and IDAC is a

typical dynamic HRA method [18]. Reference [19] iden-

tified requirements for human reliability model to be

integrated into system dynamic probabilistic risk analysis.

Reference [20] described the existing dynamic HRA sim-

ulations, and gave a prospect about next work to increase

the fidelity of simulated accident scenarios. Lack of

appropriate and sufficient performance data has been

identified as a key factor affecting HRA quality, especially

in the estimation of human error probability. Therefore,

U.S. Nuclear Regulation Commission (NRC) tried to

develop a HRA database (SACADA) to satisfy this data

need [21].

We should notice that most of these methods originated

in other industries, and they not specified for power sys-

tems. So it is necessary to propose several HRA methods

suitable for power system specific situations. As we know,

the primary cause of human errors differs a lot in different

operation scenes. Thus, it is significant to make proper

classification of power system operation scenarios for

human reliability analysis. According to the investigation,

power system operation scenarios are classified into 3

categories: time-centered scenarios, process-centered sce-

narios and emergency-centered scenarios. Then three HRA

methods suitable for the above three scenarios are proposed

respectively.

3.1 Time-centered HRA (TCHRA)

Time-centered scenario refers to situations where oper-

ators should continue to work for a long time without

interruptions, such as system state monitoring and new

equipment debugging. Operators will become fatigue and

the probability of human error to occur will increase

accordingly. Statistics show that many accidents are caused

by people’s fatigue [22]. It is obvious that continuous

working time (CWT) is the primary factor that affects

human reliability in this scenario. Besides, some other

human factors may also influence this process, such as task

complexity, environment factors, human knowledge and

experience.

Proportional hazard model (PHM) [23] could be used

for quantitative analysis of time-centered scenario. PHM

has been wildly used in the field of engineering, biology

and mechanics. The hazard function in PHM consists of

two parts: baseline function and link function. The hazard

function can be expressed as

hðt;ZÞ ¼ h0ðtÞwðZÞ; t� 0 ð1Þ

where h0(t) is the baseline function which could be used to

indicate the change of human reliability with CWT; wðZÞ is

the link function, which could be used to indicate the

influence of covariates, Z, on human reliability. In

TCHRA, five main covariates are considered: task

complexity z1, environment factors z2, human knowledge

and experience z3, human psychology z4 and physical state

z5. Therefore, it could be defined as

Z ¼ z1; z2; z3; z4; z5½ � ð2Þ
wðZÞ ¼ expðcZÞ ð3Þ

We suppose the influence coefficient of each covariate

could be 0, 1 or 2. When influence coefficient is lager, this

factor has more effect on human reliability, and human

errors are more likely to occur. c is the weight value of

each covariate. Since available data is limited, we cannot

obtain the weight value through fitting process by far. In

this paper, the weight value of covariate is obtained via

analytic hierarchy process (AHP) [24]. Through expert

assessment, the five covariates are compared in pairs with

respect to their relative importance to human error

probability. Then their value weight could be calculated.

Assuming the operation begins at time t = 0, then

human reliability function could be expressed as

RhpðtÞ ¼ PðT � tÞ ¼ exp �
Z t

0

hðs;ZÞds
� �

ð4Þ

where Rhp(t) is the probability that human error has not

occurred before the moment t. According to [25], Weibull

distribution function could be adopted as baseline function,

as shown in (5).

h0ðtÞ ¼
btb�1

ab
ð5Þ

The parameters can be estimated through careful

statistical analysis. According to [25], b = 3, a = 200

hours.

In order to illustrate the relation between human relia-

bility and continuous working hours, we suppose there are

three irrelevant scenes. Through expert assessment, the

influence coefficient and weight value in different scenes

are obtained, shown in Table 1.

Then human reliability function could be expressed as

Table 1 Influence coefficient and weight value in each scene

Covariate Influence coefficient c

Scene 1 Scene 2 Scene 3

z1 1 1 1 0.27

z2 0 1 2 0.18

z3 0 1 2 0.22

z4 1 1 2 0.15

z5 0 1 2 0.18
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RhpðtÞ ¼ exp �
Z t

0

bsb�1

ab
expðcZÞds

� �
ð6Þ

The probability of human error could be expressed as

FhpðtÞ ¼ 1 � RhpðtÞ ð7Þ

With the increase of CWT, human error probability

changes as shown in Fig. 1.

In Fig.1, when CWT is less than 10 hours, the human

error probability is extremely low (less than 7 9 10-4).

When CWT increases, human error probability increases

accordingly. Although the staffs work less than 10 hours a

day under normal conditions, long-time lasting work still

exists, such as annual inspection of main transformer while

the whole substation is out of power, and new equipment

debugging before operation. Through investigation, we find

that human errors are more likely to happen in these

situations.

Thus, in order to ensure operational reliability, we

should limit continuous work within reasonable time.

Besides, we could take some measures to improve human

reliability, such as improving operator’s skill and experi-

ence by training, improving operator’s mental and physical

state, and making work condition more suitable.

3.2 Process-centered HRA (PCHRA)

Process-centered scenario refers to situations where

operation task consists of many steps, and operators should

follow certain procedures to finish the work. We should

pay attention to the process to avoid human errors. Modi-

fied CREAM could be used to analyze this kind of sce-

nario. CREAM [13], proposed by Hollnagel E, hold the

idea that cognitive functions contain several generic failure

types. CREAM concluded the basic probability value of

each generic failure type, which is called cognitive failure

probability (CFP). The nominal values of cognitive func-

tion failures are shown in Table 2.

In CREAM, all human factors are divided into 9 cate-

gories, called common performance conditions (CPC). The

expected influence of CPCs on human reliability could be

generalized as three levels: reduced, not significant and

improved, shown in Table 3.

The CREAM standard method divided the control

model into four classes, Strategic, Tactical, Opportunistic

and Scrambled. Each control model has a corresponding

error probability interval [13]. Although CREAM method

has been widely accepted and used in many fields, some

aspects require improvement. Since the CPCs are not

specially introduced for power systems, we should con-

cretize CPCs according to regulations and actual conditions

in power systems [26]. For example, working conditions

could be divided into sub-CPCs: personal security

requirement, equipment security requirement and envi-

ronment requirement.

We could assess each sub-CPCs firstly, then we can

obtain the score of CPCs with analytic hierarchy process.

The score of CPC varies from 0 to 100 according to the

concrete conditions except Time of day, which varies from

0 to 24. Since human reliability analysis is still at the

starting stage in power systems, and related data statistics

is still very scarce. The use of expert systems, such as fuzzy

expert systems, can be helpful to improve the assessments

with limited data available [27]. In this paper, triangular

fuzzy model is used to lower subjectivity of judgment

[28].

The process of quantifying human error in process-

centered scenario is shown is Fig. 2.

In PCHRA, we should first determine the cognitive

function and operation scenario according to concrete

operation task. Then we could calculate the basic value of

human error probability (HEP) after analyzing the generic

failure types. For example, when executing one action, we

find the generic failure types are: action of wrong time

(E2), action out of sequence (E4) and missed action (E5),
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Fig. 1 Human error probability in TR-HRA

Table 2 Nominal values for cognitive function failures

Cognitive function Generic failure type Basic value

Observation O1. Wrong object observed 0.001

O2. Wrong identification 0.007

O3. Observation not made 0.007

Interpretation I1. Faulty diagnosis 0.02

I2. Decision error 0.01

I3. Delayed interpretation 0.01

Planning P1. Priority error 0.01

P2. Inadequate plan 0.01

Execution E1. Action of wrong type 0.003

E2. Action of wrong time 0.003

E3. Action of wrong object 0.0005

E4. Action out of sequence 0.003

E5. Missed action 0.003
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then basic HEP value of executing this action could be

calculated using the following equation.

PE ¼ 1 � ð1 � PE2Þð1 � PE4Þð1 � PE5Þ ð8Þ

After obtaining basic value of HEP, we should analyze

the level of CPCs and obtain correction coefficient using

(9). Then we can obtain the final result of HEP with (10).

b ¼
X

qi ð9Þ

PHEP ¼ PHEP0
� 100:25b ð10Þ

where PHEP0 is the total basic HEP value of the whole

operation task; PHEP is the final value of HEP; b is the HEP

correction coefficient; qi is the influence coefficient of

CPCi.

We take Xuyue station as an example for analysis [29].

The main transformer turning to operation from cold

standby needs ten steps, and the operation in Step 2 is

shown in Table 4. The cognitive function and generic

failure types in Step 2 is shown in Table 5. With (8) we

Table 3 Common performance conditions in CREAM

CPC Expected effect Influence coefficient Fuzzy set

Adequacy of organization Reduced -1.2 (0, 0, 45)

Not significant 0.0 (30, 50, 80)

Improved 0.8 (70, 100, 100)

Working conditions Reduced -1.0 (0, 0, 45)

Not significant 0.0 (25, 50, 75)

Improved 0.8 (70, 100, 100)

Adequacy of operational support (MMI) Reduced -1.2 (0, 0, 40)

Not significant 0.0 (30, 50, 80)

Improved 1.2 (75, 100, 100)

Availability of procedures Reduced -1.3 (0, 0,30)

Not significant 0.0 (20, 50, 80)

Improved 1.4 (70, 100, 100)

Number of simultaneous goals Reduced -1.2 (0, 0, 45)

Not significant 0.0 (35, 50, 80)

Improved 0.4 (70, 100, 100)

Available time Reduced -1.4 (0, 0, 30)

Not significant 0.0 (20, 50, 70)

Improved 1.2 (60, 100, 100)

Time of day Reduced -0.8 (0, 4, 8)

Not significant 0.0 (7, 12, 17)

Improved 0.8 (16, 20, 24)

Adequacy of training and experience Reduced -1.4 (0, 0, 35)

Not significant 0.0 (25, 50, 70)

Improved 1 (60, 100, 100)

Crew collaboration quality Reduced -1.5 (0, 0, 40)

Not significant 0.0 (30, 50, 70)

Improved 1.2 (60, 100, 100)

Analyze the level of CPCs

Calculate basic value of HEP

Obtain correction coefficient

Obtain the final value of HEP

Analyze generic failure type

Determine operation task

Determine
operation
scenario

Determine
cognitive
function

Fig. 2 Process of quantifying human error

Table 4 Step 2 of operation ticket to run spare transformer

No. Operation contents

1 Check the state of CB #313, make sure it is OFF

2 Close disconnector 313-1 and check it

3 Check the switch voltage

4 Close disconnector 313-4 and check it

Impact analysis of human factors on power system operation reliability 31
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could calculate the basic value of HEP in Step 2 is 0.011,

and the HEP of the whole process is 0.0753.

We suppose the operation is conducted in 3 different

contexts, and Context 3 represents the worst situation. In

Context 3, the organization is inadequate, and there is lack

of sound management system; the working conditions is

unpleasant; there is not enough operational support; there

exists some deficiencies in arrangement; the work is

complex and time load is heavy for the current operators;

what’s more, the task is conducted at 4 a.m. Context 1

represents the best-case of these three contexts, and Con-

text 2 is somewhere between Context 1 and Context 3.

According to CREAM basic method, we could figure out

that Contexts 1, 2, 3 belong to Tactical, Opportunistic and

Scrambled control model, respectively.

Through scenario analysis, we could obtain the scores of

CPCs in different contexts. Then we could calculate the

membership of each level with triangular fuzzy model.

With (9) and (10), we could obtain correction coefficient

and the final value of HEP, shown in Table 6.

From the simulation we can see, on the one hand, the

results of these three contexts locate in the reliability

interval of appropriate control model. It proves the validity

of the proposed methods. On the other hand, we can con-

clude that Context 1 is more suitable for human operation

when comparing with Context 2 and Context 3. It

demonstrates the impact of CPCs on human operation

quantitatively. We could also calculate the change of

human reliability when CPC differs. Furthermore, we could

take directed measures according to the simulation results.

For example, if time of day (4 a.m. in Context 3) is a main

influencing factor, we could adjust to finish the work in the

day if possible in order to improve human reliability.

3.3 Emergency-centered HRA (ECHRA)

Emergency-centered scenario refers to situations where

power system failures occurred and operators need to react

in a short time, including diagnose fault and take proper

measures. In this scenario, human reliability has significant

effect on clearing faults and recovering system reliability.

Human cognitive reliability (HCR) [30] method could be

used to quantify HEP in emergency-centered scenarios.

According to different ways of response, human

behavior is usually divided into 3 categories. This classi-

fication is commonly known as skill-based, rule-based and

knowledge-based (SRK) framework [31]. Skill-based

behavior is assumed to be highly integrated patterns of

behavior. Since the operator is so familiar with the situa-

tions, human behavior takes place without conscious

attention. Rule-based behavior refers to executing routine

tasks according to regulations strictly. This type of

behavior is typically controlled by a stored procedure.

During unfamiliar situations, no procedures are available,

and human behavior is considered as knowledge-based.

The operator has to rely upon their knowledge to make

decisions and deal with the operation task.

It is not hard to find that human errors are more likely to

occur in knowledge-based situations and less likely to

occur in skill-based situations. According to survey results

[30], it is recognized that once the operation task, scenario

and operators are determined, human error probability is

only related to the ratio of operation allowable time (t) and

operation execution time (T1/2). The relationship could be

expressed with Weibull distribution function with 3

parameters, which is shown in (11).

PðtÞ ¼ exp �
t=T1=2 � c

a

� �b
" #

ð11Þ

where P(t) is the probability of human error; a, b, c are

dimension, shape and location parameters, and their values

are determined by operation category [32], shown in

Table 7; t is the operation allowable time which is deter-

mined by power system characteristic; T1/2 is the operation

execution time which could be obtained by (12).

T1=2 ¼ T1=2;nð1 þ K1Þð1 þ K2Þð1 þ K3Þ ð12Þ

where T1/2,n is the average execution time in regular situ-

ation, which could be obtained according to the statistics;

Table 5 Human error analysis of operation Step 2

No. Cognitive function Failure types Basic value

1 Observation Wrong object observed 0.0010

2 Execution Action of wrong object 0.0005

Action out of sequence 0.0030

Observation Wrong object observed 0.0010

3 Observation Wrong object observed 0.0010

4 Execution Action of wrong object 0.0005

Action out of sequence 0.0030

Observation Wrong object observed 0.0010

Table 6 Scores of CPC in three different contexts

Contexts CPC1 CPC2 CPC3 CPC4 CPC5

1 80 80 90 88 90

2 70 60 60 60 65

3 30 30 30 30 30

Contexts CPC6 CPC7 CPC8 CPC9 PHEP

1 90 12 90 85 0.0052

2 70 23 65 70 0.0573

3 30 4 30 30 0.3792
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K1, K2, K3 are the adjustment coefficients to execution time

from aspects of training, operator mental state and opera-

tion support.

For example, when line protection channel fault occurs,

main protection should quit operation manually. This

process is supposed to be finished within 8 minutes.

Through investigation we find that the average time to

finish the job is about 5 minutes, and it depends on oper-

ators. Operator A has experience in dealing with such sit-

uations, while Operator B is inexperienced, and should

follow the regulations to finish the job. The parameters

could be defined as Table 8.

From Table 8, we can see that Operator A might fail to

finish the operation with a probability of 0.005, while the

probability is 0.341 for Operator B. Through analysis we

can conclude that when facing with emergency situations,

experience, operation time and psychological state will

affect human operation a lot. High quality is an essential

way to enhance human reliability in emergency conditions.

4 Impact of human factors on maintenance

Electrical equipment maintenance is significant to

maintain power systems stable, prolong the service life of

equipment and reduce the system power loss. According to

statistics of grid accidents, maintenance personal mistakes

occupy a large proportion [33]. In this part, we first

establish a periodic maintenance (PM) model considering

imperfect maintenance caused by human factors, and

demonstrate the impact of human factors on maintenance

availability with a simple case.

4.1 Electrical equipment maintenance model

considering imperfect maintenance

In most cases, analysts assume that maintenance is

totally perfect, which is unrealistic. Effect of maintenance

could be weakened by human factors, and more than that,

the system occasionally becomes even worse due to human

errors [34]. Several common human errors and their

external forms in maintenance are listed below.

1) Latent failures which are not detected during mainte-

nance due to operators’ insufficient awareness.

2) Wrong adjustments, incorrect estimations of system

states and inappropriate decisions.

3) Replacement with fault parts and damages introduced

during maintenance, which could be attributed to

human action errors.

The results of maintenance will be quite different due to

different levels of human reliability, as shown in Fig. 3

[35]. According to maintenance quality, the results can

differ from perfect maintenance to maintenance failure.

Since we aim to demonstrate the impact of human errors on

equipment maintenance in this paper, we make two

assumptions: � other factors are completely reliable except

human factors; ` results of maintenance consist of three

categories considering human factors.

Category 1: perfect maintenance, denoted as PM, namely

the system becomes as good as new after maintenance.

Category 2: as bad as old, denoted as ABAO, namely the

system state does not change after maintenance.

Category 3: failure after maintenance, denoted as FAM,

namely maintenance failure occurs, and the system needs

repair after maintenance.

When human errors occur, the maintenance is consid-

ered as imperfect. The probability of human error (hep)

could be obtained with PCHRA method proposed in Sec-

tion 3. The percentage of human error cause maintenance

failure is defined as n. The probability of PM, ABAO and

FAM could be expressed as follow.

PFAM ¼ hep � n ð13Þ
PABAO ¼ hep � ð1 � nÞ ð14Þ
PPM ¼ 1 � PABAO � PFAM ð15Þ

It is assumed that system begins as new and the age is

set as t = 0. The maintenance period is DT and every

maintenance time is Dt. If the system fails during

Table 7 Values of a, b, c in different operation categories

Operation category a b c

Skill-based 0.407 1.2 0.7

Rule-based 0.601 0.9 0.6

Knowledge-based 0.791 0.8 0.5

Table 8 Parameters values for different operators

Operator a b c K1 K2 K3 HEP

A 0.407 1.2 0.7 -0.12 0 -0.22 0.005

B 0.601 0.9 0.6 0.28 0.28 -0.22 0.341

As good as new1

2

3

4

5

Better than old

As bad as old

Worse than old

Maintenance failure

Periodic
maintenance

Human

Errors

PM considering impact
of human errors

Maintenance results

Fig. 3 Results of maintenance considering human errors

Impact analysis of human factors on power system operation reliability 33

123



operation, it will be repaired with mean time l2. If the

system fails after maintenance, mean repair time will be l1.

Under normal circumstances, l1 is smaller than l2, since a

failure during operation is an emergency, and the repair is

not prepared in advance. If system state does change after

maintenance, it will continue operating. If the maintenance

is perfect, or the system is repaired after failure, the system

is renewed and system age returns to 0. Equipment periodic

maintenance model is shown in Fig. 4.

Given the above description, the relation can be derived

as follow.

Pmf ¼ PFAM

X1
j¼1

P
j�1
ABAORðjDTÞ ð16Þ

Paf ¼ ð1 � PABAOÞ
X1
j¼1

P
j�1
ABAOFðjDTÞ ð17Þ

Ppm ¼ PPM

X1
j¼1

P
j�1
ABAORðjDTÞ ð18Þ

where R(t) is the reliability function; F(t) is the cumulative

distribution function of system failure; Ppm, Paf, Pmf are the

probability that system is renewed by perfect maintenance,

repair after actual failure and repair after maintenance

failure. The mean time to renewal (MTTR) is

MTTR ¼
X1
j¼1

P
j�1
ABAO

Z jDT

ðj�1ÞDT
tdFðtÞþ PFAM þ PAGANð Þ

�
X1
j¼1

ðjDTÞPj�1
ABAORðjDTÞ

ð19Þ

The availability of system could be expressed as (20)

when maintenance time is neglected.

Through a simple case, we will analyze the impact of

human errors on maintenance availability.

4.2 Results of case study

The proposed methodology is illustrated using a system

of 3 units [36] and the reliability function of this system is

RðtÞ ¼ 3e�2t � 2e�3t ð21Þ

In this case, we assume hep increases from 0.05 to 0.9, n
is 0.7, and the ratio of l1/l2 is 0.5. With the variation of the

maintenance period, maintenance availability changes as

shown in Fig. 5. DT* is normalized by 104 hours. For

example, if DT* = 0.02, then DT = 0.02 9 104 = 200

hours.

It can be seen that when hep increases from 0.05 to 0.9,

the maintenance availability decreases if DT* is less than 1,

which is the mean time to failure (MTTF) of the system.

When hep is smaller than 0.5, there exists optimal main-

tenance period that maximizes the availability. While hep

is larger than 0.5, maintenance will not be able to improve

the system availability any more due to the negative effect

of human errors.

From the results of case study, we can see that human

errors affect maintenance availability a lot, and we should

Fig. 4 Equipment periodic maintenance model
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Fig. 5 Maintenance availability with different maintenance period

AðDTÞ ¼ MTTR

MTTR þ l1PFAM

P1
j¼1

P
j�1
ABAORðjDTÞ þ l2ð1 � PABAOÞ

P1
j¼1

P
j�1
ABAOFðjDTÞ

ð20Þ
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take human factors into consideration when determining

the optimal maintenance period.

5 Impact of human factors on dispatching
operation

Reasonable dispatching is a key part in maintaining power

systems reliable and secure. However, dispatching operation

faces risks due to uncertainties, such as adverse weather,

equipment state and human errors. Common human errors in

power system mainly include three categories.

1) Insufficient of situation awareness, referring to the

situation where dispatchers fail to have a comprehen-

sive acquisition of system information in time, or

dispatchers fail to have a correct understanding of

system state.

2) Dispatch decision errors, dispatchers might make

wrong dispatch decisions due to insufficient experi-

ence or pressing time.

3) Dispatch action errors, which mainly refer to physical

action mistakes occur during operation, including action

of wrong type, action of wrong object or missed action.

Through analysis of latest grid accidents, we can con-

clude human errors have a great influence on power system

reliability, especially in emergency situations. Human error

probability in emergency situation could be calculated with

ECHRA method proposed in Section 3. Since the allow-

able time is short, dispatchers might make mistakes under

great pressure. In this part, we will analyze the impact of

human errors on emergency dispatch and the development

of power system cascading failures.

5.1 Impact of human factors on cascading failures

Cascading failure is one of main reasons that lead to

power system blackout. Under normal conditions, trans-

mission lines operate with a certain initial power load.

However, a single outage may result in line thermal

overload. If the overload could not be removed within

permitted time, more components will be tripped one by

one, which increasing the probability of cascading outage

and blackout. Allowable time to relieve line’s overload is

shown in Table 9 [37].

In Table 9, PCON, PLTE and PSTE are the continuous,

long-time and short-time emergency ratings. We define the

third condition as critical overload, because the overload

lines should be tripped immediately. In the initial stage of a

cascading failure, also called pre-cascading stage, dis-

patchers have enough time to take measures and prevent

failures extending. If dispatchers fail to restore power

system to normal state at this stage, it will enter fast-cas-

cading stage, which can result in cascading outage and load

disconnection.

In this part, we only consider the critical overload. Due

to human errors, dispatchers may fail to finish the work at

pre-cascading stage. We will evaluate the impact of human

errors on dispatch operation in emergency condition.

During the evaluation, shown in Fig. 6, we conduct

‘‘N - 1’’ test of the system, and all lines are tripped one by

one as the initial event. A DC power flow is used for this

analysis, and the critical overload line will be tripped.

Dispatch operation will be correctly executed with a

probability of human reliability.

5.2 Case study of IEEE RTS 79 system

In this part, IEEE RTS 79 system [38] is used for

analysis. We suppose generator #10 and #18 are out of

service for maintenance, and line capacity is adjusted. If

Line 4 is tripped because of failure and operators failed to

take any measures, system state will develop as follow.

Table 9 Allowable working time at different load levels

Line’s loading (PL) Allowable time

PCON\PL\PLTE 24 hours

PLTE\PL\PSTE 15 minutes

PL[PSTE Immediate trip

Fig. 6 Impact analysis of human errors on dispatch operation
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From Table 10, we can see Line 28 will be overload

after the outage of Line 4. Then Line 28 will be tripped

beyond the allowable time, as a result Lines 24, 25, 26 will

be overload. In the next stage, Lines 24-26, 30-33 and 38

will be tripped by automation device. By far Buses 17, 18,

21 and 22 are isolated. With the development of system

stage, outage extends constantly. In Stage 5, more than half

of buses are isolated and the system is split.

During the process of failure extending, if operators take

proper measures, like generation re-dispatching, it is pos-

sible to avoid system splitting. Amount of load shedding is

different if the system is stabilized at different stage.

From Table 11, we can see if the system is stabilized at

Stage 1 or 2, there will be no load shedding. The loss of

load will increase to 657 MW and 1401 MW if emergency

dispatching operation is successful at Stages 3 and 4

respectively. If all operations failed, the system will lose

the whole load.

Emergency dispatch operation may fail with a certain

probability p in every stage. When the system is stabilized

after one successful operation, amount of loss load (PLOSS)

could be expressed as

PLOSS ¼ ð1 � pÞPLOSSð1Þ þ pð1 � pÞPLOSSð2Þ
þ p2ð1 � pÞPLOSSð3Þ þ p3ð1 � pÞPLOSSð4Þ

ð22Þ

where PLOSS(1), PLOSS(2), PLOSS(3), PLOSS(4) are the loss

loads at each stage. It should be noticed that, we only

consider the first 4 stages, because the system will probably

split if we cannot make it in the first 4 stages.

We suppose there are 3 scenarios, and the human

operation error probability p could be calculated with

proposed ECHRA method. Results of p are shown in

Table 12. Line transmission capacity is set as 75% of the

rated capacity. After the evaluation shown in Fig. 6, we get

the following results.

From Table 12, we can see loss load is minimal in

Scenario 1, while maximal in Scenario 3. In Scenario 1,

human operation reliability is the highest, and operators

could take emergency dispatching to stabilize the system

early; while in Scenario 3, human error probability is the

largest, failures could spread due to human factors. As a

result, more loads will be shed when system is stable.

It should be noticed that, in this section we aim to

analyze the impact of human errors on emergency dispatch

and the development of power system cascading failures.

To simplify the discussion, we neglect the dependency

among operators. Further research will be conducted to

establish a comprehensive analysis model for dispatching

operation, which focuses on the whole crew instead of

single operator.

6 Dispatcher training evaluation simulation
system

From analysis in Section 5, we can conclude that human

factors make a great impact on dispatch operation and

power system reliability. So we should apply human error

theory and human reliability analysis to practical. In this

part, we will propose a framework of dispatcher training

evaluation simulation system (DTESS), which could be

used as a tool for dispatcher training simulation. Different

from conventional dispatcher training simulator (DTS)

[39], DTESS is completely based on simulation and oper-

ators’ cognition process is modeled with IDAC method.

Once fully developed, it can simulate dispatchers’ response

to various conditions in detail. The framework of DTESS is

shown in Fig. 7.

As shown in Fig. 7, DTESS consists of 4 modules: main

program module, operator module, scheduler module and

power system simulator module.

1) Operator module Operator module aims to model

dispatcher’ response to system in different situations.

Based on the IDAC, this model mainly consists of three

parts: I-D-A cognition model [40], performance influenc-

ing factors [41] and rules of behavior [42]. The operators’

Table 11 Loss of load in different stage

Dispatch stage PLOSS (MW)

1 0

2 0

3 657

4 1401

5 2850

Table 12 Loss of load in different operation scenarios

Scenario p PLOSS (MW)

1 0.0035 171.1

2 0.0347 179.9

3 0.1248 210.6

Table 10 Development of system state

Stage Overload line Outage line Isolation bus

1 4

2 28 28

3 24–26 24–26, 30–33, 38 17, 18, 21, 22

4 2, 6, 10, 14, 15, 17,

18, 20

2, 6, 7, 10, 14, 15,

17, 18, 20, 27

3, 15, 24

5 5, 12, 13, 16, 19,

23, 29, 34–37

9, 11–13, 16, 19,

21–23, 29

4, 6–9, 11–14,

16, 19, 20, 23
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state is initialized at the very beginning. During the

evaluation, some static PIFs will stay unchanged over a

period of time, while dynamic PIFs should be assessed

over every time step. According to the rules of behaviors,

this module will generate operator actions.

Dispatchers are supposed to take various trainings and

tests, such as skill training, security testing, psychological

test and qualifications grading. All these results could be

taken into consideration to make the modeling of

dispatcher more precise.

2) Scheduler module DTESS uses dynamic event tree

(DET) [43] to represent scenario development follow-

ing an initiating event. This module controls the

evolution of event sequences, and the branches are

generated when system state changes or operators take

actions at every time point. Some termination criteria

should be determined before the simulation, for exam-

ple branch probability is less than a specific value and

power system splits into disconnected parts. A sequence

will be terminated when the termination criteria is met.

Another function of this module is to save information

at each point, like states of power system, dispatchers’

action and branch probability. We could obtain details

of dispatchers’ operation by retrieving this information.

3) Dispatcher simulator training module This module

includes most parts of conventional DTS. It simulates

static or dynamic process of power systems, including

the behaviors of relay and automatic equipment.

Another function of control center model is to provide

interaction between power system and dispatcher. On

one hand, it reveals power system present state to

dispatcher model through data acquisition, data

processing, event and alarm processing, remote adjust-

ment and control, man-machine interface, etc. On the

other hand, actions form dispatchers are implemented

with this model.

4) Main program module Main program module is the

controlling part of the framework, managing the calls to

other modules. The general flow of DTESS is shown in

Fig. 8. At the beginning of the evaluation, state of

power system and levels of PIFs are initialized.

According to dispatcher model and power system

model, scheduler model decides whether DET branches

are generated. If there is more than one branch, the

scheduler model will save the branch information and

proceed with simulating the first branch until it meet the

termination criteria. Then the end state information is

stored and next branch information is loaded to

continue the simulation. When all the sequences are

simulated, the simulation will be terminated.

Compared to DTS, DTESS has many advantages. First,

DTESS could record dispatchers’ actions, both cognitive

and physical, in response to an initial event in detail.

Furthermore, since all the probabilities are stored, so we

can assess a dispatcher more objectively and accurately.

Through analysis of simulation results, we can find out

operators’ shortcomings and improve dispatch reliability.

Besides, DTESS could also be used to assess the quality of

Fig. 7 Framework of DTESS

Fig. 8 Flow chart of simulation process in DTESS

Impact analysis of human factors on power system operation reliability 37

123



other trainings, like security training and skill training

through adjusting operator module.

7 Conclusion

Human factors have great impact on power systems

reliability; however, there are few researches in this field.

In allusion to this situation, we attempt to analyze the

impact of human factors on power system reliability

comprehensively. Main contributions of this paper include

the following aspects.

1) Through analyzing human errors and operation sce-

narios in power systems, we established human factor

models and proposed 3 human reliability analysis

methods. Since these methods are based on practical

characteristics of power system operation scenarios,

they are suitable for power systems, and they are

verified by some power system practical cases.

2) We analyzed the impact of human factors on main-

tenance. Electrical equipment maintenance could not

be always perfect due to human errors, and mainte-

nance availability can be affected a lot. So it is

necessary to take human factors into consideration

when determining maintenance policy.

3) We analyze the impact of human errors on emergency

dispatch. Analysis and evaluation results demonstrate

that it could avoid cascading failures and reduce power

loss by improving human operation reliability.

4) Based on IDAC, we propose a framework of dis-

patcher training evaluation simulation system, which

could be used as a tool for dispatcher training

simulation. It could take all the influencing factors

into account, and make a comprehensive assessment of

dispatchers. With DTESS we can find out operators‘

shortcomings and improve dispatch reliability

As a noteworthy issue, human reliability analysis in

power systems deserves more attention. We should take

further researches into how to quantify human error prob-

ability, the influence of human factors on power system,

and the measures taken to reduce human errors and

enhance power system reliability.
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