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Abstract

Theoretical results strongly suggest that in order to learnthe kind of complicated functions that can repre-
sent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one needsdeep architec-
tures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets
with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching
the parameter space of deep architectures is a difficult optimization task, but learning algorithms such as
those for Deep Belief Networks have recently been proposed to tackle this problem with notable success,
beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding
learning algorithms for deep architectures, in particularthose exploiting as building blocks unsupervised
learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models
such as Deep Belief Networks.

1 Introduction

Allowing computers to model our world well enough to exhibitwhat we call intelligence has been the focus
of more than half a century of research. To achieve this, it isclear that a large quantity of information
about our world should somehow be stored, explicitly or implicitly, in the computer. Because it seems
daunting to formalize manually all that information in a form that computers can use to answer questions
and generalize to new contexts, many researchers have turned to learning algorithmsto capture a large
fraction of that information. Much progress has been made tounderstand and improve learning algorithms,
but the challenge of artificial intelligence (AI) remains. Do we have algorithms that can understand scenes
and describe them in natural language? Not really, except invery limited settings. Do we have algorithms
that can infer enough semantic concepts to be able to interact with most humans using these concepts? No.
If we consider image understanding, one of the best specifiedof the AI tasks, we realize that we do not yet
have learning algorithms that can discover the many visual and semantic concepts that would seem to be
necessary to interpret most images. The situation is similar for other AI tasks.
We assume that the computational machinery necessary to express complex behaviors (which one might
label “intelligent”) requires highly varying mathematical functions, i.e. mathematical functions that are
highly non-linear in terms of raw sensory inputs. Consider for example the task of interpreting an input
image such as the one in Figure 1. When humans try to solve a particular task in AI (such as machine vision
or natural language processing), they often exploit their intuition about how to decompose the problem
into sub-problems and multiple levels of representation. Aplausible and common way to extract useful
information from a natural image involves transforming theraw pixel representation into gradually more
abstract representations, e.g., starting from the presence of edges, the detection of more complex but local
shapes, up to the identification of abstract categories associated with sub-objects and objects which are parts



of the image, and putting all these together to capture enough understanding of the scene to answer questions
about it. We view the raw input to the learning system as a highdimensional entity, made of many observed
variables, which are related by unknown intricate statistical relationships. For example, using knowledge
of the 3D geometry of solid object and lighting, we can relatesmall variations in underlying physical and
geometric factors (such as position, orientation, lighting of an object) with changes in pixel intensities for
all the pixels in an image. In this case, our knowledge of the physical factors involved allows one to get a
picture of the mathematical form of these dependencies, andof the shape of the set of images associated
with the same 3D object. If a machine captured the factors that explain the statistical variations in the data,
and how they interact to generate the kind of data we observe,we would be able to say that the machine
understandsthose aspects of the world covered by these factors of variation. Unfortunately, in general and
for most factors of variation underlying natural images, wedo not have an analytical understanding of these
factors of variation. We do not have enough formalized priorknowledge about the world to explain the
observed variety of images, even for such an apparently simple abstraction asMAN , illustrated in Figure 1.
A high-level abstraction such asMAN has the property that it corresponds to a very large set of possible
images, which might be very different from each other from the point of view of simple Euclidean distance
in the space of pixel intensities. The set of images for whichthat label could be appropriate forms a highly
convoluted region in pixel space that is not even necessarily a connected region. TheMAN category can be
seen as a high-level abstraction with respect to the space ofimages. What we call abstraction here can be a
category (such as theMAN category) or afeature, a function of sensory data, which can be discrete (e.g., the
input sentence is at the past tense) or continuous (e.g., theinput video shows an object moving at a particular
velocity). Many lower level and intermediate level concepts (which we also call abstractions here) would be
useful to construct aMAN -detector. Lower level abstractions are more directly tiedto particular percepts,
whereas higher level ones are what we call “more abstract” because their connection to actual percepts is
more remote, and through other, intermediate level abstractions.
We do not know exactly how to build robustMAN detectors or even intermediate abstractions that would
be appropriate. Furthermore, the number of visual and semantic categories (such asMAN ) that we would
like an “intelligent” machine to capture is large. The focusof deep architecture learning is to automatically
discover such abstractions, from the lowest level featuresto the highest level concepts. Ideally, we would like
learning algorithms that enable this discovery with as little human effort as possible, i.e., without having to
manually define all necessary abstractions or having to provide a huge set of relevant hand-labeled examples.
If these algorithms could tap into the huge resource of text and images on the web, it would certainly help to
transfer much of human knowledge into machine-interpretable form.
One of the important points we argue in the first part of this paper is that the functions learned should have a
structure composed of multiple levels, analogous to the multiple levels of abstraction that humans naturally
envision when they describe an aspect of their world. The arguments rest both on intuition and on theoretical
results about the representational limitations of functions defined with an insufficient number of levels. Since
most current work in machine learning is based on shallow architectures, these results suggest investigating
learning algorithms for deep architectures, which is the subject of the second part of this paper.
In much of machine vision systems, learning algorithms havebeen limited to specific parts of such a pro-
cessing chain. The rest of of design remains labor-intensive, which might limit the scale of such systems.
On the other hand, a hallmark of what we would consider intelligent includes a large enough vocabulary of
concepts. RecognizingMAN is not enough. We need algorithms that can tackle a very largeset of such
tasks and concepts. It seems daunting to manually define thatmany tasks, and learning becomes essential
in this context. It would seem foolish not to exploit the underlying commonalities between these these tasks
and between the concepts they require. This has been the focus of research onmulti-task learning(Caruana,
1993; Baxter, 1995; Intrator & Edelman, 1996; Baxter, 1997). Architectures with multiple levels natu-
rally provide such sharing and re-use of components: the low-level visual features (like edge detectors) and
intermediate-level visual features (like object parts) that are useful to detectMAN are also useful for a large
group of other visual tasks. In addition, learning about a large set of interrelated concepts might provide a
key to the kind of broad generalizations that humans appear able to do, which we would not expect from
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separately trained object detectors, with one detector pervisual category. If each high-level category is itself
represented through a particular configuration of abstractfeatures, generalization to unseen categories could
follow naturally from new configurations of these features.Even though only some configurations of these
features would be present in the training examples, if they represent different aspects of the data, new ex-
amples could meaningfully be represented by new configurations of these features. This idea underlies the
concept ofdistributed representationthat is at the core of many of the learning algorithms described in this
paper, and discussed in Section 4.

Figure 1: We would like the raw input image to be transformed into gradually higher levels of representation,
representing more and more abstract functions of the raw input, e.g., edges, local shapes, object parts, etc.
In practice, we do not know in advance what the “right” representation should be for all these levels of
abstractions, although linguistic concepts might help us imagine what the higher levels might implicitly
represent.

This paper has two main parts which can be read almost independently. In the first part, Sections 2, 3
and 4 use mathematical arguments to motivate deep architectures, in which each level is associated with a
distributed representation of the input. The second part (in the remaining sections) covers current learning
algorithms for deep architectures, with a focus on Deep Belief Networks, and their component layer, the
Restricted Boltzmann Machine.
The next two sections of this paper review mathematical results that suggest limitations of many existing
learning algorithms. Two aspects of these limitations are considered: insufficientdepth of architectures, and
locality of estimators. To understand the notion ofdepth of architecture, one must introduce the notion
of a set of computational elements. An example of such a set is the set of computations performedby an
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