Українська   English
ДонНТУ   Портал магистров

Содержание

Введение

За многие миллионы лет природа накопила богатейшие запасы углерода в виде угля, нефти и природного газа. Сейчас эти ископаемые виды топлива используются человеком для получения энергии и химических продуктов.

В конце прошлого - начале нынешнего века большинство продуктов органической химии производилось из каменных углей. По мере увеличения добычи нефти химические вещества угольного происхождения начали вытесняться продуктами нефтехимического синтеза, производимыми более простыми и менее энергоемкими методами. Однако, оценка разведанных мировых запасов различных видов ископаемого органического сырья приводит к выводу о том, что месторождения нефти и газа будут в значительной степени исчерпаны уже в начале первых десятилетий XXI века. Запасов же угля должно хватить на ближайшие несколько сот лет. Вывод о необходимости постоянного увеличения масштабов использования угля в энергетике и промышленности подтверждается данными по сопоставлению запасов нефти, газа, угля и сложившейся в настоящее время структурой их мирового потребления.

Уголь является одним из главных источников получения тепловой энергии, а также представляет собой ценное сырье для химической переработки с целью получения необходимых для промышленности продуктов. мировой добыче всех видов горючих ископаемых, достигающей примерно 6 млрд. т. в год (в пересчете на условное топливо) на твердые горючие ископаемые (уголь, торф, горючие сланцы) приходится 48%, около 35% добывается нефти и 17% природных горючих газов.

В балансе мировых запасов горючих ископаемых доля угля и горючих сланцев составляет 90%, торфа -- 5%, нефти и природных газов -- 5%.

Большая часть добываемого угля используется для энергетических целей, а наиболее ценные угли подвергаются термической переработке - полукоксованию, коксованию, газификации и гидрогенизации.

В настоящее время насчитывается свыше 350 ценных продуктов различных наименований, получаемых из угля, используемых промышленностью и сельским хозяйством. В коксохимической промышленности, при получении синтетических топлив, углеродистых материалов и ряда химических соединений качество целевой продукции, а иногда и сама возможность ее получения всецело зависят от вещественного состава и свойств перерабатываемых углей. В связи с этим изучению качества и разработке методов оценки пригодности углей для различных отраслей промышленности придается огромное значение.

Для обеспечения разных отраслей промышленности углями соответствующего качества последние обычно подвергаются предварительной механической обработке - обогащению для удаления из угля минеральных примесей, брикетированию, классификации по крупности.

В рациональную схему переработки углей должно входить не только полное использование всех компонентов органической массы угля, но также должны быть использованы и минеральные примеси в угле, включая редкие и рассеянные элементы (всего в составе углей насчитывается более 70 ценных химических элементов, входящих в те или иные соединения). Существенно важным для практики вопросом является также извлечение путем обогащения углей содержащихся в них сульфидов железа, используемых для производства серной кислоты.

В углях содержатся также элементы, пригодные для нужд сельского хозяйства. Ценными как стимуляторы роста растений являются микроэлементы - молибден, цинк, марганец, медь и др., а щелочные золы из угля являются весьма полезными добавками для кислых почв, повышающими урожайность бобовых и других культур.

1. Виды, происхождение, добыча и запасы твердых топлив

Твердые топлива, используемые как источник энергии и сырье для химического производства, подразделяются на топлива естественного происхождения - природные - и топлива искусственные - синтетические. К природным топливам относятся торф, бурые и каменные угли, антрацит, горючие сланцы. Они называются также ископаемыми твердыми топливами. Искусственными топливами являются каменноугольный, торфяной и нефтяной кокс, полученные пирогенетической переработкой различных видов природного топлива, а также брикеты и угольная пыль - продукты механической переработки твердого топлива.

Ископаемым твердым топливом (твердым горючим ископаемым) называются естественные твердые горючие вещества органического происхождения, образовавшиеся из остатков отмерших растений и планктонов в результате бактериального воздействия. В земной коре твердые горючие ископаемые находятся в виде углеродистых осадочных пород, образующих месторождения или бассейны. Все ископаемые твердые топлива по материалу, из которого они образовались, делятся на сапропелиты и гуммолиты.

Сапропелиты возникли в результате восстановительного разложения остатков сапропеля - илистых отложений, образовавшихся на дне водных бассейнов из планктона и низших растений. К сапропелитам относятся горючие битуминозные сланцы и некоторые другие ископаемые.

Гуммолиты возникли в результате окислительного разложения остатков высших растений. Они подразделяются на:

- гуммиты, состоящие в основном из гумусовых веществ;

- линтобиолиты, образовавшиеся из стойких структурных элементов низших растений (споры, пыльца и т.п.).

Основные виды ископаемых твердых топлив (торф, бурые и каменные угли, антрацит) относятся к гуммитам.

Глубина превращения исходных биогенных материалов в результате углеобразования в твердые топлива характеризуется так называемой степенью их углефикации (метаморфизма), под которой понимают среднее содержание углерода в топливе (в мас.%, или дол). По возрастанию степени углефикации твердые гуммитовые топлива образуют генетический ряд:

Торф > бурые угли > каменные угли > антрацит

Степень углефикации их приведена в табл.1

Таблица 1. Степень углефикации ископаемых твердых топлив

Топливо

Торф

Бурые угли

Каменные угли

Антрацит

Степень углефикации, мас.%

58-62

15-61

16-92

93-96

Твердые топлива составляют основную массу известных ископаемых топлив на планете. Их суммарные запасы на несколько порядков превосходят запасы жидкого (нефть) и газообразного топлива.[3]

В России для характеристики потребительской ценности угля используется разработанная в СССР Единая классификация углей по ГОСТ 25543-88 (ЕК--88). Согласно ЕК, по степени метаморфизма (изменений в структуре, минеральном и химическом составе горной породы) выделяют уголь бурый, каменный и антрацит. Для целей налогообложения уголь типологизирован по видам, а коксующийся и прочий уголь также и по маркам: антрацит, коксующийся уголь (8 марок), бурый уголь, прочий уголь (7 марок).

Бурый уголь представляет собой переходную форму от торфа к каменному углю. По сравнению с торфом в буром угле меньше доля различимых растительных остатков, а по сравнению с каменным углём бурый уголь более влажен (до 40 % и более). В буром угле содержание углерода 55,0--78,0 %, водорода 4,0--6,5 %, кислорода 15,0--30,0 %. Цвет от бурого до чёрного. Мощность пластов -- 60--90 метров, некоторые благоприятны для открытой добычи. Бурый уголь используют как топливо для теплоэлектростанций, а также как химическое сырьё для получения жидкого топлива, синтетических веществ, газа и удобрений.

Каменный уголь более плотный и менее влажный по сравнению с бурым углём, имеет чёрный или серо-чёрный цвет. Содержание углерода в каменном угле 75,0--97,0 % и более, водорода 1,5--5,7 %, кислорода 1,5--15,0 %, серы 0,5--4,0 %, азота до 1,5 %, влаги 4--14 %. Мощность пластов -- от долей метра до нескольких десятков метров. Глубина залегания пластов -- от выхода на поверхность до 2--2,5 км и глубже. Каменный уголь используется как топливо в быту, металлургической и химической промышленности, в том числе для извлечения из него редких и рассеянных элементов. топливо каменный уголь коксование

Коксующиеся угли -- способные при температуре 500--700 °C и более спекаться, обладающие высокой теплотой сгорания и низким содержанием летучих веществ и минеральных примесей каменные угли, из которых при коксовании (13--18-часовой процесс нагревания угля без доступа воздуха до 950--1050 °C) можно получать кокс -- уголь повышенной прочности. Кокс используется в основном в чёрной металлургии для выплавки чугуна, являясь при этом не только топливом, но и восстановителем железной руды. Реже кокс используют в литейном производстве, химической промышленности, цветной металлургии и некоторых других процессах. В коксе содержание углерода более 96 %, влаги 0,5--4,0 %

Антрацит -- с точки зрения потребительских свойств наиболее качественный, гумусовый уголь высшей степени метаморфизма, растительные остатки в антрацитах с трудом различимы даже под микроскопом. Чёрный, часто с сероватым оттенком и обязательным металлическим блеском, антрацит имеет наибольшую твёрдость по минералогической шкале, хорошую электропроводность, большую вязкость и не спекается. В антраците содержание углерода 93,5--97,0 %, водорода 1,0--3,0 %, кислорода 1,5--2,0 %, азота 1,5--2,0 %, влаги 1,0--3,0 %. Мощность пластов в основном малая (до 1,3 метра) и средняя (1,3--3,5 метра), редко 10--40 метров. Антрациты используют как высококачественное энергетическое топливо в химическом и металлургическом производстве.

Основные способы добычи угля -- закрытый и открытый. Предприятия для закрытой добычи угля называют шахтами, для открытой -- карьерами, или, в профессиональной терминологии угольщиков, разрезами. Кроме разрезов и шахт, в угольной промышленности работают предприятия для переработки угля -- обогатительные фабрики.

Шахта представляет собой сложное горное предприятие по добыче угля подземным способом. В зависимости от мощности угольного пласта шахта работает в среднем около 40 лет, а на особо мощных пластах до 50--70 лет. Добыча угля производится слоями (так называемыми «добычными горизонтами»), каждый слой вынимается около 10 лет, после чего происходит реконструкция горизонта и разработка следующего, более глубокого, слоя. Процесс реконструкции требуется для обеспечения экологической безопасности окружающей среды и работающих в забоях людей, это обязательное условие существования шахты. С учётом процессов реконструкции и среднего срока службы шахт, для поддержания уровня добычи необходимо постоянно строить новые шахты -- ежегодно в отрасли выбывают 5--7 выработанных предприятий.

Разрез производит выемку угля уступами и последовательными полосами. Верхние уступы опережают нижние и расширяют разрабатываемое разрезом пространство.

Общие геологические (прогнозные) запасы угля на территории России составляют 4 трлн. т, это 30 % мировых запасов угля. Разведанные (балансовые) запасы оценены в 190 млрд. т. Объём добычи ограничен совокупной производственной мощностью горнодобывающих предприятий. В 2010 году уголь добывали 91 шахта и 137 разрезов общей годовой мощностью 380 млн. т. Фактически в 2010 году на-гора было выдано 323 млн. т угля.

Российские угольные месторождения неравнозначны по качеству угля, количеству его запасов, а также занимаемой площади, и находятся в разных регионах страны. В настоящее время российский уголь добывается на территории десяти основных угольных бассейнов. Крупнейшим разрабатываемым месторождением бурого угля является Канско-Ачинский бассейн, каменного и коксующегося угля -- Кузнецкий угольный бассейн (Кузбасс), антрацитов -- Восточный Донбасс и Горловский бассейн.

Кузнецкий угольный бассейн (Кузбасс) -- крупнейший России и один из крупнейших в мире. Расположен в Кемеровской области, большинство горнодобывающих предприятий сосредоточены на юге региона. Способы добычи: открытая (36 разрезов) и закрытая (58 шахт). Общие геологические запасы каменного угля оценены в 693 млрд. т, из них коксующихся 207 млрд. т.

Канско-Ачинский угольный бассейн находится большей частью на территории центра Красноярского края, а также занимает небольшую территорию Кемеровской и Иркутской областей. Способ добычи: открытый. Общие геологические запасы: 638 млрд. т, угли в основном бурые. Мощность пластов 2--56 метров.

Печорский угольный бассейн расположен в пределах Республики Коми и Ненецкого автономного округа и занимает площадь 90 тыс. км?. Способ добычи: закрытый, глубина залегания пластов до 298 метров. Общие геологические запасы угля: 344,5 млрд. т, в том числе коксующегося 9 млрд т. МощнВосточный Донбасс. Основная часть Донецкого угольного бассейна (Донбасса) территориально находится на Украине, а российская его часть (Восточный Донбасс) полностью расположена в пределах Ростовской области. В целом Донбасс обладает геологическими запасами угля в 140,8 млрд т, из них 60 % каменные, 18 % коксующиеся (25 млрд т), 22 % антрациты. Способ добычи: в основном закрытый. Мощность пластов 0,6--1,2 метра. Восточный Донбасс имеет 24,2 млрд т общих геологических запасов угля, из них 90 % антрациты, 5 % коксующиеся. Разведанные запасы промышленных категорий: антрациты 298,7 млн. т, коксующиеся угли 16 млн. т.

Улуг-Хемский угольный бассейн в Туве является одним из наиболее привлекательных для разработки и, одновременно, наименее освоенным, так как здесь нет железной дороги для транспортировки угля. Площадь бассейна 2,3 тыс. км?. Способ добычи: открытый. Общие геологические запасы оцениваются около 14 млрд. т. Уголь каменный, в основном коксующийся. Мощность пластов 0,6--12 метров.

Подмосковный угольный бассейн общей площадью 120 тыс. км? затрагивает территории Ленинградской, Новгородской, Тверской, Смоленской, Московской, Калужской, Тульской и Рязанской областей. Общие геологические запасы: 11,8 млрд. т бурого угля. Глубина залегания пластов достигает 200 метров.

Иркутский угольный бассейн расположен на юге Иркутской области на площади 42,7 тыс. км?. Общие геологические запасы угля: 9 млрд. т, из них 94 % каменный (частично коксующийся) и 6 % бурый. Мощность пластов 1--10 метров.

Южно-Якутский угольный бассейн находится в Якутии и занимает общую площадь 25 тыс. км. Способ добычи: открытый. Разведанные запасы: 3,0 млрд. т. Уголь каменный. Мощность пластов от 1--3 до 10--60 метров. ость пластов средняя, около 1,53 метра.

Минусинский угольный бассейн расположен в административных пределах Республики Хакасия. Способы добычи: открытый (5 разрезов) и закрытый (2 шахты). Балансовые запасы оценены в 2,7 млрд. т, угли в основном каменные.

Горловский угольный бассейн находится в Новосибирской области на территории Искитимского района. Способы добычи: открытый (2 разреза) и закрытый (1 шахта). Разведанные запасы: 303 млн. т. 100 % запасов -- антрацит. Мощность пластов до 41 метра.

2. Каменные угли

2.1 Строение и свойства каменных углей

Каменные угли различной природы являются наиболее распространенным видом твердого ископаемого топлива. Это неоднородные твердые вещества черного или черно-серого цвета, включающие четыре типа макроингредиентов, различающихся по блеску, внешнему виду и составу: блестящий (витрен), полублестящий (кларен), матовый (дюрен) и волнистый (фюзен). Соотношение этих ингредиентов, составляющих органическую массу каменных углей, характеризует их структуру, химический и минералогический состав и обуславливает их многообразие и различие свойств.

В состав органической части каменных углей входят битумы, гумминовые кислоты и остаточный уголь. Молекулярная структура органической части угля представляет собой жесткий трехмерный полимер нерегулярного строения, содержащий подвижную фазу в виде разнообразных мономолекулярных соединений. Обе фазы построены из отдельных фрагментов, включающих ароматические, в том числе многоядерные и гидрированные системы с алифатическими заместителями, и азотсодержащие гетероциклы, соединенные мостиковыми связями С-С, С-О-С, C-S-C и C-NH-C. Степень конденсированности фрагментов (п) зависит от степени углефикации каменного угля. Так, при степени углефикации 18% п = 2, при степени 90% п=4, для антрацита n = 12. В составе каменных углей установлено также наличие различных функциональных групп: гидроксильной (спиртовые и фенольные), карбонильной, карбоксильной и серосодержащих групп - SR - и - SH. [7]

Важнейшими характеристиками каменных углей, от которых зависят возможность и эффективность их использования, являются зольность, влажность, сернистость, выход летучих веществ и механические свойства, а для углей, применяемых в качестве сырья для термохимической переработки, - также спекаемость и коксуемость.

Зольность. Золой называется негорючая часть угля, состоящая из минеральных веществ, содержащихся в топливе. В состав золы входят оксиды алюминия, кремния, железа (III), кальция и магния. Высокая зольность снижает теплоту сгорания угля и ухудшает качество получаемого кокса. Зольность каменных углей колеблется от 3 до 30% и может быть снижена их обогащением. Угли, используемые для коксования, должны иметь зольность не выше 1-1,5%.

Влажность. Общая влажность угля состоит из внешней, образующей капли или пленки на поверхности, и внутренней (пирогенетической), выделяемой в процессе коксования. Влага, являясь балластом, удорожает транспортировку угля, затрудняет подготовку его к коксованию, хранение и дозировку, а также повышает расход тепла на коксование и увеличивает время коксования. Влажность углей, используемых для термохимической переработки, не должна превышать 1%.

Сернистость. Сера в каменных углях находится в виде колчеданной, сульфатной и органической. Общее содержание серы в углях колеблется от 0,4 до 8%. Так как в процессе коксования большая часть серы остается в коксе и может при выплавке чугуна переходить в металл, вызывая его красноломкость, уголь необходимо десульфировать обогащением.

Выход летучих веществ. Летучими веществами каменного угля называются парообразные и газообразные вещества, выделяющиеся из угля при нагревании его без доступа воздуха при определенной фиксированной температуре. Выход летучих веществ зависит от условий образования, химического состава и степени углефикации угля, а также от температуры, скорости нагревания и выдержки при заданной температуре. С увеличением степени углефикации выход летучих веществ уменьшается. Так, для торфа он составляет около 10%, для бурых углей - 65-45%, каменных углей - 45-10%, для антрацита - менее 10%. Методика выхода летучих веществ стандартизирована. Он определяется нагреванием навески угля при 850?С и выдерживании при этой температуре в течение семи минут. [8]

2.2 Классификация каменных углей

В основу технологической классификации каменных углей положены выход летучих веществ и толщина образующегося при нагревании пластического слоя. В таблице 2 приведена технологическая классификация углей одного из бассейнов, по которой они делятся на 1 марок (классов).[4]

Таблица 2. Технологическая классификация углей

Марка угля

Выход летучих веществ, %

Толщина пластического слоя

Наименование

Обозначение

Длиннопламенный

Газовый

Жирный

Коксовый

Отощенный спекающ.

Тощий

Антрацит

Д

Г

Ж

К

ОС

Т

А

42

35

35-21

21-18

22-14

11-19

9

-

6-15

13-20

14-20

6-13

2.3 Ископаемые угли как химическое сырье

Значительная часть ископаемых углей подвергается высокотемпературной (пирогенетической) переработке, то есть является химическим сырьем. Цель такой переработки - получение из угля ценных вторичных продуктов, используемых в качестве топлива и полупродуктов основного органического синтеза.

Все методы переработки ископаемых углей основаны на гетерогенных, в большинстве случаев некаталитических процессах, протекающих в многофазной системе при высоких температурах. В этих условиях материал угля претерпевает глубокие изменения, приводящие к образованию новых твердых, жидких и газообразных продуктов. По назначению и условиям процессы пирогенетической переработки твердого топлива подразделяются на три типа: пиролиз, газификация и гидрирование.

Пиролизом, или сухой перегонкой, называется процесс нагревания твердого топлива без доступа воздуха с целью получения из него твердых, жидких и газообразных продуктов различного назначения. В зависимости от условий процесса и природы вторичных продуктов различают низкотемпературный пиролиз, или полукоксование, и высокотемпературный пиролиз, или коксование. По масштабам производства, объему и разнообразию производимой продукции процесс коксования занимает первое место среди всех процессов переработки твердого топлива.

Полукоксование проводят при 500-580°С с целью получения искусственного жидкого и газообразного топлива транспортабельного и более ценного, чем исходное твердое топливо. Продукты полукоксования - горючий газ, используемый в качестве топлива с высокой теплотой сгорания и сырья для органического синтеза, смола, служащая источником получения моторных топлив, растворителей и мономеров, и полукокс, используемый как местное топливо и добавка к шихте для коксования. Сырьем для полукоксования служат низкосортные каменные угли с высоким содержанием золы, бурые угли и горючие сланцы. [14]

Процессы гидрирования и газификации ставят целью получение из твердого топлива соответственно жидких продуктов, используемых в качестве моторного топлива, и горючих газов. Внедрение этих методов переработки повышает значение твердых топлив и каменных углей, в частности, в топливном балансе страны.

На сегодняшний день наиболее популярные методы переработки каменных углей:

- пиролиз

- гидрирование

- гидрогенизация

-переработка углей в синтетические жидкие топлива

Под термином пиролиз каменного угля принято понимать совокупность процессов, происходящих при нагревании угля при условии отсутствия каких-либо реагентов. Однако в последние годы под пиролизом каменного угля стали подразумевать также и процессы, происходящие с воздействием какого-либо дополнительного реагента (так называемые гидропиролиз и окислительный пиролиз).

Часто под термином пиролиз понимают и процедуру газификации угля, хотя это не совсем верно, поскольку при этом также используются дополнительные реагенты.

Термическая переработка каменного угля широко применяется для получения различных углеродистых твердых материалов, и жидких и газообразных продуктов. В связи с этим, в зависимости от назначения конечных продуктов пиролиза, исходным сырьём для переработки может быть практически любой уголь. Это очень удобно, поскольку весь добытый уголь может идти на переработку, а не на завод по переработке твердых бытовых отходов.

Пиролиз каменного угля

Процессы пиролиза каменного угля применялись человечеством еще с конца XVIII. В то время уголь перерабатывали для получения таких материалов как:

Каменноугольный кокс, используемый в металлургии

Облагороженные угли для бездымного сжигания в печах

Светильный газ, используемый для освещения улиц

Разумеется, что технология и процесс пиролиза каменного угля с тех пор практически не изменилась, а вот оборудование, используемое для данного процесса, напротив, усовершенствовалось. Сегодня, в результате длительной эволюции аппаратных и технических решений, процесс пиролиза угля отличается довольно высокими энергетическими и экологическими показателями.

Однако, в тоже самое время следует учитывать и тот факт, что продукты пиролиза угля, в особенности жидкие, содержат в своем составе большие количества органических соединений, которые содержат кислород, азот и серу. По этой причине жидкие продукты пиролиза угля не могут быть использованы в качестве синтетического аналога жидкого углеводородного топлива без дополнительной очистки. Поэтому термическую переработку угля достаточно редко используют для получения жидкого синтетического топлива в качестве конечного продукта пиролиза.

Как протекает процесс пиролиза угля

Как мы уже упоминали ранее, процесс пиролиза каменного угля основан на нагревании углей до определенной температуры без доступа кислорода с целью его термической деструкции. Во время данного процесса этом протекают следующие группы химических реакций:

Деполимеризация органической массы каменного угля с образованием органических молекул с меньшей молекулярной массой

Вторичные реакции превращений образующихся в процессе пиролиза продуктов, среди которых:

конденсация

полимеризация

ароматизация алкилирование

Обе группы химических реакций протекают как последовательно, так и параллельно. Конечным итогом совокупности этих термохимических превращений является образование жидких газообразных и твердых продуктов.

Следует упомянуть, что пиролиз каменного угля осуществляется в различных температурных интервалах. Выбор температуры пиролиза зависит типа продуктов, которые необходимо получить в конечном итоге. Низкотемпературный пиролиз (или полукоксование) обычно производится при 500 – 600 градусов по шкале Цельсия, а высокотемпературный пиролиз (или как его еще называют, коксование) – производится при 900 – 1100 градусов по шкале Цельсия.

3. Продукты пиролиза каменного угля

Итак, в самом начале своей статьи мы упоминали о том, что путем пиролиза из каменного угля можно получить продукты следующих типов:

Твердые

Жидкие

Газообразные

Гидрирование угля осуществляют при 400 - 600 С под давлением водорода до 2 5 - 10 Па ( 250 атм) в присутствии катализатора - оксидов железа. При этом образуется жидкая смесь углеводородов, которую подвергают обычно деструктивному гидрированию на никеле или других катализаторах.

Реакцию гидрирования угля проводят при 560 С и 3 79 МПа. Пары углеводородов и газ выводят через верх реактора, а углеродный остаток выгружают через дно. После охлаждения до 316 С углеродный остаток выводят через разгрузочные бункеры и освобождают от углеводородов. Он окончательно охлаждается примерно до 93 С, превращается в пылевидное топливо и поступает в паровые котлы или в установку для получения водорода методом частичной газификации угля.

Реакция гидрирования угля экзотермична и температура регулируется подачей холодного водорода, подведенного в шести точках по высоте колонн. Колонны не имеют внутренних насадок, но стенки их изнутри защищены от перегрева теплоизолирующей футеровкой. Паста проходит колонны снизу вверх с общим временем пребывания в блоке около 1 часа и попадает затем в горячий сепаратор.

Механизм гидрирования угля можно представить следующим образом:

1) диффузия водорода к углю ( 310 - 350);

2) первичное разложение угля по графитовым связям и образование двумерных макромолекул ( 350 - 370);

3) гидрирование и постепенный распад шестичленных колец, связанные с образованием более простых систем.

При гидрировании угля по методу Бергиуса получают твердый остаток, органическое вещество которого состоит главным образом из фузита. Анализ пробы такого продукта показал, что органическая масса состоит практически полностью из фузита.  На заводах гидрирования угля получаются относительно большие количества этана, который является исходным сырьем для производства высококачественных масел. Бензин, полученный при гидрировании угля, приблизительно содержит 14 - 16 % Н2 и 81 - 84 %С.

4. Переработка углей в синтетические жидкие топлива

По физико-химическим свойствам полученная жидкая углеводородная смесь является близкой к нефти.

Дальнейшая переработка жидкого бурого угля осуществляется в условиях, аналогичных процессам переработки нефти.

Содержание минеральных веществ в буром угле превышает их содержание в нефтяном сырье. При переработке бурого угля в синтетическое жидкое топливо необходимо применение совершенных процессов фракционирования и разделения углеводородной и минеральной составляющих.

На второй стадии осуществляется очистка жидкого бурого угля от механических примесей, взвешенных частиц, солей, серы и других компонентов, подлежащих удалению.

Третья стадия — углубленная переработка жидкого бурого угля в синтетическое жидкое топливо.

Впервые синтетическое топливо из угля появилось в Германии — в 1911 г. немецкий химик Ф.Бергиус получил из угля бензин. Дело в том, что в Германии не было собственных месторождений нефти, а потребность в топливе возрастала. Зато были одни из самых больших в Европе залежей бурого угля, что и подвигло на проведение исследований с целью получения топлива именно из этого ископаемого. Проблема была успешно решена усилиями немецких химиков, и уже к 1941 г. Германия вырабатывала до 4 млн т жидкого топлива в год.

В начале 70-х годов в ЮАР была создана группа заводов "Сасол" по переработке угля в синтетическое жидкое топливо, что позволило с меньшими потерями пережить эмбарго на поставки нефтепродуктов. Сегодня компания "Сасол" перерабатывает около 47 млн т угля в год, производя около 7 млн т жидкого топлива и имея годовую прибыль в сотни миллионов долларов. Именно этой южноафриканской компании приписывают наивысшие показатели с точки зрения уровня технологии и освоения масштабов производства.

После ЮАР наиболее масштабно и высокотехнологично синтезировать моторное топливо начали в США. Восемь проектов на различных стадиях реализации осуществляются в Китае, и все они предназначены для полной замены традиционных видов топлива. В целом в Нигерии, Катаре, Малайзии и США на стадии проектирования и строительства находятся около 50 объектов суммарной мощностью более 300 млн т топлива в год. К проблеме подключились Япония, Индия, Польша, Индонезия, Пакистан. Общий объем официально объявленных инвестиций в эту сферу превысил $15 млрд, а производство синтетического топлива достигло 20 млн т в год.

Технология получения эмульсионного топлива включает следующие основные стадии: ожижение бурого угля, стабилизацию эмульсионной системы и очистку эмульсионной системы от механических примесей и взвешенных частиц.

На первой стадии осуществляется процесс ожижения бурого угля.

Вторая стадия — стабилизация эмульсионной системы в кавитационном реакторе.

На третьей стадии осуществляется очистка эмульсионной системы от механических примесей и взвешенных частиц. Очистка осуществляется оригинальным, не имеющим аналогов, способом — термо-гравитационной очисткой.

Полученная эмульсия имеет все необходимые регламентированные физико-химические свойства. К таким свойствам относятся: стабильность топливной системы в течение длительного времени, технологически приемлемые значения реологических параметров — низкая вязкость, низкие значения пределов текучести, отсутствие выраженных тиксотропных свойств, предельная однородность каогуляционных структур.

Эмульсия отвечает основному требованию, которое предъявляется к эмульсионным топливам, — в эмульсии содержится высокая концентрация горючей основы, достаточной для обеспечения высокой калорийности топлива.

Эмульсионное топливо является экологически чистым видом альтернативного жидкого топлива также и потому, что помимо уменьшения в отходящих газах перечисленных выше вредных выбросов, при его горении существенно снижается концентрация оксидов азота и серы.

Литература

  1. Байбатша А.Б. Геология месторождений полезных ископаемых Учебник. – Алматы: КазНТУ, 2008. – 368 с
  2. Коксохимия как источник углеводородов // Точка доступа: https://m.studme.org/286777/matematika_himiya_fizik/koksohimiya_istochnik_uglevodorodov
  3. Обзор технологий и рынков продуктов глубокой переработки углей // Объединение независимых экспертов в области минеральных ресурсов, металлургии и химической промышленности Москва декабрь, 2012 https://www.marketing-magazin.ru/imgs/goods/1309/ru_uglechim.pdf
  4. Осипов А.М. Грищук С.В., Бойко З.В. Особенности начальной стадии прямого ожижения ископаемых углей Донбасса //Донецкие чтения 2018: образование, наука, инновации, культура и вызовы современности:– Том 2: Химико-биологические науки / под общей редакцией проф. С.В.Беспаловой. – Донецк: Изд-во ДонНУ, 2018. – 356 с. – С. 58-61
  5. Профессиональная подготовка студентов по курсу «Термическая переработка твердого топлива»: учеб. пособие/Ю.И. Рахимова. – Самара: Самар. гос. техн. ун-т, 2011. – 60с
  6. Шатохин С. В. Стратегические ориентиры инновационного развития угольной промышленности ДНР // Экономика Донбасса: проблемы настоящего и возможности буду щего: сб. науч. ст. . - М .: АНО Изд. Дом «Науч. обозрение», 2017. - 297 с., С. 187 – 190
  7. Шевченко О.А., Проскурня Ю.А. Эколого-геохимические особенности углей и шахтных вод Донбасса (на примере Донецко-Макеевского углепромышленного района) // Геолого-мшералопчний в1сник,- 2001№ 2. - С. 38-4