
Short: How Talkative is your Mobile Device?
An Experimental Study of Wi-Fi Probe Requests

Julien Freudiger
PARC (A Xerox Company)

ABSTRACT

The IEEE 802.11 standard defines Wi-Fi probe requests as a ac-

tive mechanism with which mobile devices can request information

from access points and accelerate the Wi-Fi connection process.

Researchers in previous work have identified privacy hazards asso-

ciated with Wi-Fi probe requests, such as leaking past access points

identifiers and user mobility. Besides several efforts to develop

privacy-preserving alternatives, modern mobile devices continue to

use Wi-Fi probe requests. In this work, we quantify Wi-Fi probe

requests’ threat to privacy by conducting an experimental study of

the most popular smartphones in different settings. Our objective

is to identify how different factors influence the probing frequency

and the average number of broadcasted probes. Our conclusions are

worrisome: On average, some mobile devices send probe requests

as often as 55 times per hour, thus revealing their unique MAC ad-

dress at high frequency. Even if a mobile device is not charging

and in sleep mode, it might broadcast about 2000 probes per hour.

We also evaluate a commercially deployed MAC address random-

ization mechanism, and demonstrate a simple method to re-identify

anonymized probes.

1. INTRODUCTION
Mobile devices regularly broadcast Wi-Fi probe requests in or-

der to advertise their presence and actively discover Wi-Fi access

points in proximity [15]. A new breed of service providers takes

advantage of Wi-Fi probe requests to monitor user activities, such

as shopping habits [2, 4, 8, 20, 23, 25], or to reduce the cost of

sharing content across smartphones [27]. Wi-Fi probe requests are

unique identifiers, as they contain the MAC address of mobile de-

vices, and may also include a list of preferred Wi-Fi networks (viz.,

SSIDs) accessed by these devices in the past.

In previous work, researchers have identified the privacy dangers

associated with Wi-Fi probe requests and warned against potential

abuse of user location tracking [7, 21] and profiling [6, 24]. In par-

ticular, several researchers showed that a passive adversary could

track user locations via probe requests [7] and profile users by an-

alyzing SSIDs included in probe requests [5, 6, 24]. In fact, probe

requests may even contain users’ names [17].

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author. Copyright is held by the owner/author(s).
WiSec’15 June 22-26 2015, New York City, NY, USA
ACM 978-1-4503-3623-9/15/06.

Several countermeasures exist and most consist in modifying

the Wi-Fi service discovery process. Lindqvist et al. [18] propose

a privacy-preserving Wi-Fi discovery process using cryptographic

challenge-responses on top of probe requests. Kim et al. [16] pro-

pose broadcasting different probes depending on context. Beres-

ford and Stajano [3] suggest changing MAC addresses over time.

Greenstein et al. [12] propose removing link-layer identifiers al-

together. Unfortunately, these approaches have not been adopted

in practice. Recently, Apple released a privacy feature that uses

short-term and changing MAC addresses for Wi-Fi probes in cer-

tain conditions [19]. This approach is reminiscent of the concept

of mix zones [3, 10]. Overall, users are mostly unaware of the fact

that their devices broadcast probe requests, and lack control over it.

To the best of our knowledge, none of the existing work has char-

acterized how often mobile devices broadcast Wi-Fi probes and

the extent of the threat. Quantification of privacy threats is es-

sential to design effective privacy protection mechanisms, and re-

searchers in previous work did so for location privacy [11, 26], de-

anonymization [22], and Wi-Fi fingerprinting [9] among others. In

this work, we seek to quantify the privacy threat of probe requests

by measuring how often and under what conditions mobile devices

broadcast probe requests. Our hope is that a deeper understand-

ing of the privacy risks associated with Wi-Fi probes will increase

awareness and transparency about potential privacy concerns, and

fuel the release and adoption of stronger protection mechanisms.

Contributions. Our main contributions are as follows:

1. We experiment with several packet capture configurations

(e.g., antennas and network interfaces) in order to identify

an efficient approach to collect Wi-Fi probe requests;

2. We measure the number of probe requests broadcasted by

mobile devices under different configurations and quantify

the privacy risk;

3. We study the effectiveness of a currently deployed MAC ran-

domization mechanism.

Results. We reach a number of surprising conclusions. First, we

find a large discrepancy in the amount of Wi-Fi probes collected

with different packet capture configurations. We find that researchers

in previous work are likely to have experimented on about 57% of

the data that we are able to collect, and might thus have obtained

lower bounds on privacy concerns. Second, we find that the number

of broadcasted probe requests depends on the OS and the number

of networks known to a mobile device. For example, Android L

5.0.1 broadcasts about 1500 probes per hour in general. With iOS

8.1.3, about 120 are broadcasted per hour with a small increase in

scenarios with a larger number of networks known. In contrast,

1



Sniffer 

WiFi Probes

Mobile device

…"

Figure 1: Threat model. A sniffer uses Wi-Fi-compatible an-

tennas to collect Wi-Fi probe requests broadcasted by a nearby

mobile device on 802.11b/g/n channels.

Android Kitkat 4.4.2 linearly increases the number of broadcasted

probe requests depending on the number of known networks. We

also observe that probe requests are bursty in nature. With 4 known

networks, Android L 5.0.1 broadcasts probes on average every 66

seconds, Android 4.4.2 every 72 seconds, whereas iOS 8.1.3 broad-

casts on average every 330 seconds. These measurements indicate

that an adversary could track devices at the granularity of minutes.

Third, we make a few positive observations. We notice that SSIDs

are not systematically broadcasted with recent mobile OSes, and

only included for hidden networks. We also learn that BlackBerry

OS 10.3.1 does not broadcast probe requests unless the network is

hidden. Finally, we find that the implementation of Apple iOS 8.1.3

MAC randomization can be defeated: It is possible to link probe

requests coming from the same device using different MAC ad-

dresses by using Wi-Fi probe requests’ sequence number and other

vendor specific information.

In summary, as of 2015, billions of smartphones in the world are

publicly broadcasting their unique identifiers at a high frequency.

Although wireless network discovery is an important problem, pri-

vacy consequences seem at odds with technical gains associated

with active network discovery.

2. PRELIMINARIES
We describe the considered scenario and associated threat model.

2.1 System Model
The IEEE 802.11 standard [15] defines guidelines for Wi-Fi com-

munications. Legacy 802.11b/g operates in the 2.4GHz frequency

band over 11 channels (in the US). Out of these 11 channels, three

are non-overlapping (channels 1, 6, and 11). A recent update to

the standard (802.11n) also supports 21 non-overlapping channels

at higher frequencies (5GHz). These new channels have much

higher capacity, but are prone to interference with other systems

and are not always available: They are assigned using a Dynamic

Frequency Selection (DFS) technique. In practice, only 4 channels

out of the 21 are guaranteed. Most modern mobile devices switch

between 802.11b/g and n, using a technique known as band steer-

ing, depending on traffic demands, existing network congestion,

as well as their distance to the access point. The 2.4GHz band pro-

vides longer range compared to the 5GHz channel (which struggles

to operate through walls).

An important challenge of wireless networks is service discov-

ery. Mobile devices and Wi-Fi Access Points (AP) need a mecha-

nism to efficiently announce their presence to each other. The IEEE

802.11 standard [15] defines two mechanisms to do so: A passive

mechanism in which APs periodically advertise their presence to

mobile devices using beacons, and an active mechanism in which

mobile devices actively search for APs using probe requests.

2.1.1 Wi-Fi Beacons

Wi-Fi access points announce their presence by broadcasting

beacon management frames that contain network configuration pa-

rameters, such as the Service Set Identifier (SSID) and supported

data rates. Mobile devices listen for beacons on 802.11b/g/n chan-

nels, and passively detect nearby APs. The beaconing rate depends

on the desired network discovery speed, and acceptable bandwidth

overhead. Most APs set a beaconing interval of about 100ms. Mo-

bile devices can respond to beacons with Wi-Fi association frames.

2.1.2 Wi-Fi Probe Requests and Responses

In addition to passive discovery, mobile devices can proactively

discover APs by sending probe request management frames on

802.11b/g/n channels. Probe requests include a unique device iden-

tifier (e.g., the MAC address), a device’s capabilities (e.g., sup-

ported 802.11 standards), and can be directed to a specific AP (by

indicating its SSID), or broadcasted to all APs within range. Ta-

ble 1 provides an example of probe requests including the different

headers, such as the sequence number (SEQ). Most probe requests

are sent in vain as there might not be an AP in proximity. Upon

receiving a probe request, an AP informs the client of its presence

using a probe response.

Network discovery based on beacons tends to be slow and energy

consuming. By sending active probes, a mobile device can keep

the Wi-Fi radio on for just a few milliseconds, the amount of time

it takes for a probe response to be received, and quickly discover

nearby networks. This is particularly helpful in scenarios where a

mobile device roams across APs from the same provider. Similarly,

probes help maintain Wi-Fi connections even when mobile devices

are asleep. Finally, probe requests are the only solution to con-

nect to hidden networks (viz., APs that do not broadcast beacons).

Technically, the 802.11 standard does not impose a broadcasting

frequency for probe requests and beacons.

2.2 Threat Model
Since probe requests are broadcasted before association with APs,

they are sent in the clear. They are thus easy to collect with com-

modity hardware, such as wireless cards in monitoring mode, and

standard software, such as Airodump, TCPDump, or Wireshark.

We assume a passive adversary that aims to collect as many Wi-

Fi probe requests as possible using a number of wireless antennas

in monitoring mode (Fig. 1). For each device broadcasting probe

requests, the adversary learns the MAC address of the device, pos-

sibly preferred SSIDs, and signal strength of received packets. The

adversary can then analyze the collected data in order to extract

further information about the owner of a mobile device.

For example, an adversary can setup sniffing material near a gro-

cery store and monitor shopping habits. By linking MAC addresses

and signal strength to different locations inside the store, an adver-

sary can track mobile devices’ whereabouts and shopping interests.

Worse yet, an adversary can setup multiple sniffing stations and

link users across locations, threatening location privacy. An adver-

sary might also infer the identity or social ties of a mobile device

owner via analysis of SSIDs in probe requests [6, 7].

3. EXPERIMENTAL EVALUATION
We design an experiment to efficiently collect Wi-Fi probe re-

quests from mobile devices, and then quantify the privacy threat.

3.1 Setup and Assumptions
Because we seek to measure the risk to privacy, we aim to collect

as many Wi-Fi probe requests as possible. Collecting all wireless

2



Frame Ctrl Duration Destination Source BSSID SEQ SSID FCS

... ... ff:ff:ff:ff:ff:ff 14:10:9F:d5:04:01 ff:ff:ff:ff:ff:ff ... null ...

... ... ff:ff:ff:ff:ff:ff 88:30:8a:49:db:0d ff:ff:ff:ff:ff:ff ... “PARC Visitor” ...

Table 1: Example of probe requests. One probe request is broadcasted by device with MAC address 14:10:9F:d5:04:01. Another is

directed to network with SSID “PARC Visitor” by device with MAC address 88:30:8a:49:db:0d. SEQ is the sequence number of the

probe request and FCS is a redundancy check code. Frame Ctrl indicates the type of the frame. For example, probe requests are

management frames (type=0x00), with subtype 0x04.

communications from a specific device is difficult for various rea-

sons. First, mobile devices might send their messages on different

wireless frequencies over time (over the 11 b/g and 21 n channels),

and packet capture software (e.g., TCPDump or Wireshark) must

be configured to use antennas and listen to those channels if possi-

ble. Second, some packets may be lost due to the noisy nature of

the wireless medium (i.e., 802.11 uses an open access CSMA/CA

protocol, and collisions occur frequently).

Our setup includes three dedicated Wi-Fi network interfaces each

with one antenna connected to a Linux machine. We use existing

software (i.e., Aircrack-ng on Ubuntu 14.10 with Linux 3.16) in

order to collect Wi-Fi probe requests into .cap files using the three

antennas. We developed Python scripts to automatically parse and

analyze the collected data. Since the same Wi-Fi probe request

might be captured by different antennas, we remove duplicates by

compare timestamps of different Wi-Fi probes as well as their se-

quence numbers. If two packets with the same sequence number

are collected within the same burst of probe requests, we consider

them as duplicates. We also filter out frames that contain errors

(i.e., incomplete or with erroneous timestamps).

We consider all 802.11b/g/n channels (2.4GHz and 5GHz). Note

that there are 21 non-overlapping channels in the 5GHz band, mak-

ing them particularly difficult to monitor.

We consider four different mobile devices: iPhone 6 with iOS

8.1.3, Google Nexus 5 with Android L 5.0.1, Samsung Galaxy S3

with CyanogenMod 11 (based on Android Kitkat 4.4.2), and Black-

Berry Q10 with BlackBerry OS 10.3.1. We select these mobile de-

vices because they represent more than 95% of mobile OS usage.

For Android devices, we assume that Google Services are enabled.

Metrics. We collect data for exactly one hour in each experiment,

repeat each experiment 5 times, and then average our measure-

ments. We measure the total number of probes transmitted by mo-

bile devices as it reflects the absolute number of packets broad-

casted over the air. We also defines bursts as groups of probes sent

contiguously over time, and measure the frequency of bursts.

3.2 Experiment 1: Capture Configurations
We consider different packet capture configurations that aim at

maximizing the number of successfully collected Wi-Fi probes.

Description. We tested six different configurations: 1) 1.dynamic:

One antenna hopping across 802.11b/g channels, other antennas

unused; 2) 1.static: One antenna set to one of three non-overlapping

802.11b/g channels (1, 6, or 11), other antennas unused; 3) 3.dy-

namic: Three antennas hopping across 802.11b/g channels in a

coordinated fashion (i.e., same hopping sequence shifted by one

step); 4) 3.dynamic.s: Three antennas separately hopping across

802.11b/g channels; 5) 3.dynamic.s.n: Three antennas separately

hopping across 802.11b/g/n channels; and 6) 3.static: Three anten-

nas each set to a non-overlapping 802.11b/g channel (1, 6, 11).

For simplicity, we focus on one device, namely the Samsung

Galaxy S3 with Android Kitkat 4.4.2, and configure it as follows: It

is connected to a charger, without any applications running, locked,

and with 4 SSIDs in memory.

0

500

1000

1500

2000

2500

3000

3500

4000

1.
dy

na
m

ic

1.
st
at

ic
.c
01

1.
st
at

ic
.c
06

 

1.
st
at

ic
.c
11

3.
dy

na
m

ic
.s

3.
dy

na
m

ic
.s
.n

3.
dy

na
m

ic

3.
st
at

ic

Average number of probes Average number of missing probes

Figure 2: Average number of probes collected with different

antenna configurations. The higher the plain blue bar is, the

more probe requests are collected. The estimated number of

missing probes is shown in dashed red.

Average number of probe requests. In Fig. 2, we show in plain

blue the number of probes that were collected in each scenarios.

We find that 3.static collects the largest number of probes (2,100),

followed by 3.dynamic and 3.dynamic.s (1,900). Interestingly, al-

though the hopping mechanism is designed to cover as much of

the spectrum as possible, the static configuration performs better.

We believe that this is due to the overlap of 802.11b/g channels:

The hopping algorithm ends up monitoring the same overlapping

channels with some probability. Another interesting observation is

that monitoring the 5GHz band spreads our three antennas-budget

too thin, and thus 3.dynamic.s.n performs worse than focusing on

802.11b/g. Of course, someone equipped with more antennas could

capture enough of the non-overlapping 5GHz channels to outper-

form 3.static, but this requires investment in sniffing material (up

to 21 antennas). In the following, we use 3.static.

Previous experiments [2, 6, 7, 24] do not appear to have consid-

ered the use of multiple antennas for data collection, and are likely

to have used a single antenna (corresponding to 1.dynamic). If so,

previous results capture about 57% of 3.static and probably pro-

vide lower bounds on privacy risks of probe requests.

Average number of missing probes. In Fig. 2, we also show in

dashed red the estimated number of probes that were not collected

(i.e., missed). This allows us to better understand the representativ-

ity of our measurements. In order to estimate the number of missed

probes, we study the sequence number of probe requests. Specifi-

cally, each probe has a sequence number (SEQ in Table 1), that is

incrementally increased with each probe request. By counting se-

quence numbers missing from our collected data, we estimate the

number of missing probes. For example, if we collected 3 probes

with sequence number 1, 2, 5, we can infer that we missed two

probes (3 and 4). We find that 3.static misses about 39% of probes

(i.e., we captured 61% of the probes). One possible explanation is

that missing probes were transmitted on 5GHz channels not moni-

tored by our setup. The noisy nature of the wireless medium might

be another cause of missing probes.

3



Figure 3: Number of probes broadcasted per minute for Sam-

sung Galaxy S3 with Android Kitkat 4.4.2. Probes are sent in

bursts over time, with as many as 50 probes sent in one second.

Probing bursts. In Fig. 3, we show the number of probe requests

sent every minute over the course of an hour by the Samsung Galaxy

S3 in one experiment. This visualization highlights the bursty na-

ture of probe requests. In particular, we observe that probe requests

are sent in frequent bursts with a relatively regular pattern. In the

following, we study the statistical properties of such probing bursts.

3.3 Experiment 2: Known Networks
We compare the broadcasting rate of mobile devices under dif-

ferent numbers of SSIDs stored in memory.

Description. So far, we considered a conservative number of four

SSIDs known to the devices (i.e., stored in memory). We artifi-

cially add and remove SSIDs in devices’ memory, and manually

test whether it affects the frequency and number of transmitted

probes. We do so by first erasing all Wi-Fi APs from devices’

memory, and then creating a series of 20 Wi-Fi APs with unique

SSIDs. We connect and disconnect mobile devices to a number of

those APs depending on the experiment. Note that we did not man-

ually input SSIDs, as devices would then consider them as hidden

networks. Instead, we connected mobile devices to a number of

carefully crafted APs depending on the experiment.

Average number of probe requests. In Fig. 4, we show the num-

ber of probe requests sent on average by each mobile device given

the number of known SSIDs. The number of probes helps us mea-

sure how loud a device is. We find that BlackBerry does not broad-

cast any Wi-Fi probes, thus providing high privacy.

The iPhone with iOS 8.1.3 broadcasts Wi-Fi probes in the low

hundreds, and we see a small increase with 20 known SSIDs. For

Android L 5.0.1, the number of broadcasted probes is relatively

stable, but significantly larger than the iPhone (about 1500). An-

droid 4.4.2 broadcasts the most probes, and the number of probes

seems to depend linearly on the number of known SSIDs. We are

able to approximate the number of probes n (dashed line in Fig. 4)

as follows: n = k · l · 13, where 13 is the number of 802.11b/g

channels that we monitor, k is the number of SSIDs stored in mem-

ory, and l = 45 is the estimated hourly rate of probing. We find

that the number of probes deviates from the upper bound with 20

known SSIDs. Another interesting observation is that with 0 known

SSIDs, Android 4.4.2 transmits more probe requests that with 1-5

known SSIDs. This is counterintuitive as one would expect that not

knowing any SSID is better for privacy.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 10 20

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
P

ro
b

e
s


Number of Known SSIDs

Samsung S3 Android 4.4.2

Estimate Samsung

iPhone 8 iOS 8.1.3

Blackberry Q10 OS 10.3.1

Nexus 5 Android L 5.0.1

Figure 4: Average number of probe requests against the num-

ber of known SSIDs. Android devices broadcast more probes

in general. Note the non-linear x-axis.

Fraction of probes with SSID. We measure the fraction of probe

requests that contain the names of preferred SSIDs, and find that

only Android 4.4.2 broadcasts SSIDs, and does so in 98% of its

probes (other devices did not broadcast a single SSID in our experi-

ments). We observe that Android reduced the broadcast of SSIDs to

a bare minimum with its latest release (i.e., SSIDs are only broad-

casted for hidden networks). This positive development for privacy

might come as a result of previous criticism [24]. Nonetheless, ac-

cording to recent Android developers statistics [1], about 40% of

Android devices are on Kitkat 4.4.2 (and many more on older An-

droid distributions), and thus continue to broadcast SSIDs.

Probing bursts. In Fig. 5, we show the histogram of probing bursts

for 0, 4, and 10 known SSIDs. Probing bursts are important as they

help measure the ability of an adversary to track devices. With 0

known SSIDs, we observe that Android 4.4.2 is a clear outlier and

broadcasts messages with high intensity (as often as every 15 sec-

onds). Second, we observe that as the number of known SSIDs

increases, the distribution of probe requests over time changes and

approaches an exponential distribution: Probes tend to be sent over

short periods of time, and with decreasing probability. Compara-

tively, the iPhone only shows an exponential property with a high

number of known SSIDs.

We measure the mean number of bursts per hour and the mean

inter-arrival time of probing bursts. For 4 known SSIDs, we find

that Android L 5.0.1 broadcasts 55 bursts per hour on average, one

burst every 66 seconds. Android 4.4.2 broadcasts about 45 bursts

per hour on average, one burst every 72 seconds. iOS 8.1.3 broad-

casts about 11 bursts per hour on average, one burst every 330 sec-

onds. In other words, Android devices have more intense series

of bursts compared to iOS 8.1.3. The number of bursts per hour

remains relatively constant with different number of known SSIDs.

Another interesting insight is that if we focus on the inter-arrival

times of probes, a majority of probing events repeatedly happen

within the same second: In our experiments, the distribution of

inter-arrival times for Android devices has about 3 bits of entropy,

indicating that the timing of bursts is highly predictable. In fact,

devices seem to slowly increase the inter-arrival time of bursts in

a predictable manner, and reset the inter-arrival time when the OS

goes out of sleep. On Android, Google Services are an important

factor in generating OS activity, and reseting the probing timer, thus

leading to a higher bursting frequency.

3.4 Experiment 3: Device Configurations
We consider a series different mobile device configurations and

measure how it affects the number of probes.

4



(a) 0 Known SSIDs (b) 4 Known SSIDs (c) 20 Known SSIDs

Figure 5: Illustration of the frequency of probe requests given different numbers of known SSIDs.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

D
ef

au
lt

N
ot

C
ha

rg
in
g

Scr
ee

nO
n

W
i-F

iC
on

ne
ct

ed


W
i-F

iS
et

tin
gs

O
n

B
lu
et

oo
th

O
n

Airp
la
ne

O
n

K
no

w
In

Pro
xi
m

ity
A

v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
P

ro
b

e
s
 Samsung S3 Android 4.4.2

iPhone 6 iOS 8.1.3

Nexus 5 Android L 5.0.1

Figure 6: Effect of device configuration on average number of

probes for four mobile devices.

Description. We consider nine different device configurations, each

a variation of the default configuration: 1) Default: Bluetooth is

off, the device is charging, locked, not connected to a Wi-Fi net-

work, and with 4 known SSIDs; 2) NotCharging: The device is

disconnected from the charger; 3) ScreenOn: The device is un-

locked every 5 minutes and locked again; 4) Wi-FiConnected: The

device is connected to a Wi-Fi network; 5) Wi-FiSettingsOn: The

device is left untouched with the Wi-Fi settings app on; 6) Blue-

toothOn: Bluetooth is turned on; 7) AirplaneOn: Airplane mode

is turned on (i.e., no 3G/LTE connectivity), and Wi-Fi is left on;

8) KnownInProximity: One known SSID appears in proximity of

mobile devices every 5 minutes for 10 seconds.

Observations. In Fig. 6, we show the number of probes collected

in each device configuration. We observe that NotCharging and

AirplaneOn do not have much of an effect. Wi-FiSettingsOn in-

creases the number of broadcasted probes for Android 4.4.2 and

iOS 8.1.3, but not for Android L 5.0.1. In contrast, device un-

locking (ScreenOn) dramatically increases the number of probes

for Android 4.4.2 and iOS 8.1.3, and to a lesser extent, for An-

droid L 5.0.1. Once connected to Wi-Fi (Wi-FiConnected), most

devices stop transmitting probes, except Android L which surpris-

ingly continues broadcasting. This might be used by Android L

for faster hand-over between access points, but seems inefficient as

probes should only be transmitted when the signal strength of an

associated AP weakens.

Finally, we notice that with KnownInProximity, Android 4.4.2

has the highest increase in number of probes broadcasted. This is

surprising as a known network in proximity should cause an asso-

ciation request, and not an increase in probes. In fact, other de-

vices do not exhibit a significant probing increase. A malicious

entity [28] can exploit this behavior by sending forged Wi-Fi bea-

cons, thus pushing Android 4.4.2 devices to reveal their presence.

Figure 7: Illustration of randomized iOS 8.1.3 MAC addresses.

3.5 Experiment 4: Privacy Protection
We test the efficacy of an existing privacy mechanism.

Description. The best privacy mechanism consists in not broad-

casting probes requests unless the network is hidden (as done by

BlackBerry). To the best of our knowledge, the only deployed al-

ternative to actively protect privacy randomizes MAC addresses.∗

Researchers in previous work [19] found that randomized frames

are used when an iPhone is locked and location capabilities are

disabled. We review the iOS 8.1.3 randomization mechanism by

monitoring packets sent after randomization.

Re-identifying randomized MACs. In Fig. 7, we show the Wire-

shark capture of randomized MACs from iOS 8.1.3 devices. First,

we find that the MAC address is altered while the device is in sleep

mode, and the real MAC address is used when the device is in use.

iOS 8.1.3 broadcasts a different random MAC address whenever

the device goes into sleep mode. Location services do not need to

be turned off for random MAC addresses to be used. Turning off

location services makes it more probable that a device enters sleep

mode, and uses a random MAC address.

Second, we find that it is easy to detect random MAC addresses.

Organizations developing products using Wi-Fi (ISO/IEC 8802 stan-

dards) must register to IEEE MAC Address Block Large [14]. Ran-

dom MAC addresses are thus easy to recognize since they corre-

spond to unassigned MAC addresses. In Fig. 7, we see that Wire-

shark automatically labels MAC addresses from Apple devices, and

does not label random MAC addresses.

Third, careful analysis of sequence numbers (SEQ) in probe re-

quests shows that it is possible to link packets sent by the same de-

vice using different MAC addresses. For example, in Fig. 7, device

5a:e3:24:ea:35:4a broadcasts a probe with SEQ=1039 and shortly

after device Apple_51:2d:db broadcasts a probe with SEQ=1040.

In other words, the incremental SEQ increase indicates that both

packets might originate from the same device. It is also possible to

use vendor specific information included in probes to link different

packets to a device, or to identify a device’s brand. For example,

802.11n defines an aggregation process to group packets together

rather than transmitting them separately (Aggregated MAC Proto-

col Data Unit (A-MPDU)). This is advertised in probe requests and

tends to be different across devices from different brands.

∗Bluetooth 4.2 uses random MAC addresses and passive network
discovery.

5



We checked all MAC addresses in our collected data against

the published list of assigned MACs [14] to identify potentially

anonymized MAC addresses, and then used the sequence number

information as well as timing information to re-identify random-

ized MAC addresses. Specifically, if a MAC address is detected as

random and appears more than three times with a sequence number

close to a real MAC address, it is flagged as a randomized MAC

corresponding to the real MAC address. By doing so, we were able

to automatically link randomized probes to real probes in several

instances. In the series of experiments with iOS 8.1.3 in default

configuration, we captured on average 121 probes with true MAC

address, and could re-identify 16 randomized probes on average.

4. CONCLUSION AND FUTURE WORK
We quantify the threat to user privacy posed by Wi-Fi probe re-

quests. Concretely, we consider several mobile devices under dif-

ferent configurations and measure the number of broadcasted probe

requests. We reach a number of worrying conclusions. Our mea-

surements show that third parties can monitor the whereabouts of

certain devices with high precision. In our experiments, Android

devices are particularly at risk as they broadcast probes at high

frequency (approximately every minute). Among our surprising

results, we find that it is possible to re-identify iOS 8.1.3 random-

ized MAC addresses using sequence numbers in probe requests.

We also find that Android L 5.0.1 devices broadcast probe requests

while connected to an access point, and that the number of probes

broadcasted by Android 4.4.2 devices linearly depends on the num-

ber of SSIDs it has in memory. On a positive note, SSIDs are not

systematically broadcasted in latest OS versions, and BlackBerry

smartphones rarely broadcast probes.

While carrying out our work, we notice that the probing behavior

of a given device significantly depends on the OS version, e.g., an

iPhone 6 with iOS 8.3 probes more frequently than with iOS 8.1.3.

This means that our results are indicative of a spectrum of probing

behaviors. It also means that mobile device manufacturers have

the technical means to change probing behavior, and improve user

privacy. In the meantime, privacy-conscious users might be wise to

turn off their Wi-Fi interface when not in use.

Our Python scripts are available upon request for others to run

their own experiments and expand the set of covered devices and

configurations (e.g., app in use, user mobility [13], laptops...). In

the future, we will consider active attacks that stimulate the broad-

cast of probes (similar to KnownInProximity). We will also fur-

ther examine the ability to re-identify probes with randomized MACs,

exempli gratia, taking into account user mobility patterns.

Acknowledgements. The author wishes to thank Shantanu Rane,
Alejandro Brito, Emiliano De Cristofaro, and anonymous reviewers
for their useful comments.

References
[1] Android. Developer Dashboards. https://developer.android.com/

about/dashboards/index.html, 2015.

[2] M. V. Barbera, A. Epasto, A. Mei, V. C. Perta, and J. Stefa. Signals
from the crowd: uncovering social relationships through smartphone
probes. In IMC, 2013.

[3] A. R. Beresford and F. Stajano. Mix zones: User privacy in location-
aware services. In Pervasive Computing and Communications Work-

shops, 2004.

[4] B. Bonné, A. Barzan, P. Quax, and W. Lamotte. WiFiPi: Involuntary
tracking of visitors at mass events. In WoWMoM, 2013.

[5] N. Cheng, X. Wang, W. Cheng, P. Mohapatra, and A. Seneviratne.
Characterizing privacy leakage of public WiFi networks for users on
travel. In INFOCOM, 2013.

[6] M. Cunche, M. A. Kaafar, and R. Boreli. I know who you will meet
this evening! linking wireless devices using Wi-Fi probe requests. In
WoWMoM, 2012.

[7] M. Cunche, M. A. Kaafar, and R. Boreli. Linking wireless devices
using information contained in Wi-Fi probe requests. Pervasive and

Mobile Computing, 2014.

[8] Euclid Analytics. Answers and insights for physical locations. http:
//euclidanalytics.com/, 2015.

[9] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. V. Randwyk, and
D. Sicker. Passive data link layer 802.11 wireless device driver fin-
gerprinting. In Usenix Security, 2006.

[10] J. Freudiger, M. Raya, M. Félegyházi, P. Papadimitratos, and J.-P.
Hubaux. Mix-zones for location privacy in vehicular networks. In
Workshop on wireless networking for intelligent transportation sys-

tems (Win-ITS), 2007.

[11] J. Freudiger, R. Shokri, and J.-P. Hubaux. Evaluating the privacy risk
of location-based services. In FC. 2012.

[12] B. Greenstein, D. McCoy, J. Pang, T. Kohno, S. Seshan, and
D. Wetherall. Improving wireless privacy with an identifier-free link
layer protocol. In MobiSys, 2008.

[13] M. Humbert, M. H. Manshaei, J. Freudiger, and J.-P. Hubaux. Track-
ing games in mobile networks. In GameSec. 2010.

[14] IEEE. MA-L PUBLIC LISTING. http://standards.ieee.org/
develop/regauth/oui/public.html, 2015. ISO/IEC 8802 standards.

[15] IEEE Standard Association. IEEE Standard for Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY). 2012.

[16] Y. S. Kim, Y. Tian, L. T. Nguyen, and P. Tague. LAPWiN: Location-
Aided Probing for Protecting User Privacy in Wi-Fi Networks. S&P

poster, 2013.

[17] B. Konings, C. Bachmaier, F. Schaub, and M. Weber. Device names in
the wild: Investigating privacy risks of zero configuration networking.
In Mobile Data Management (MDM), volume 2, 2013.

[18] J. Lindqvist, T. Aura, G. Danezis, T. Koponen, A. Myllyniemi,
J. Mäki, and M. Roe. Privacy-preserving 802.11 access-point dis-
covery. In WiSec, 2009.

[19] B. Misra. iOS8 MAC randomization - Analyzed! http://blog.
airtightnetworks.com/ios8-mac-randomization-analyzed,
2014. Airtight Networks.

[20] Motorola. Analysis of iOS 8 MAC Randomization on Locationing.
White Paper, 2014.

[21] A. Musa and J. Eriksson. Tracking unmodified smartphones using
Wi-Fi monitors. In SenSys, 2012.

[22] A. Narayanan and V. Shmatikov. Robust de-anonymization of large
sparse datasets. In S&P, 2008.

[23] Path Intelligence. Revolutionary technology for detailed data insights.
http://www.pathintelligence.com/technology/, 2015.

[24] Peter Eckersley and Jeremy Gillula. Is Your Android Device Telling
the World Where You’ve Been? http://goo.gl/3XezqR, 2014. EFF,
2014.

[25] Sensepost. Snoopy: Distributed Tracking and Profiling Framework.
http://research.sensepost.com/conferences/2012/distributed_
tracking_and_profiling_framework, 2012.

[26] R. Shokri, G. Theodorakopoulos, J.-Y. Le Boudec, and J.-P. Hubaux.
Quantifying location privacy. In S&P, 2011.

[27] K. Thilakarathna, H. Petander, J. Mestre, and A. Seneviratne. Mobi-
Tribe: Cost Efficient Distributed User Generated Content Sharing on
Smartphones. IEEE Transactions on Mobile Computing, 2013.

[28] WiFi Pineapple. Mark V Standard. https://hakshop.myshopify.
com/products/wifi-pineapple, 2015.

6


