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Summary 
 
This chapter presents a perspective of fuzzy control systems. Fuzzy control is a form of 
intelligent control characterized by the use of expert knowledge on the control strategy 
and/or the behavior of the controlled plant. This expert knowledge is represented by 
means of IF-THEN rules and linguistic variables. Attributes or values of these linguistic 
variables are linguistic terms associated with fuzzy sets, a generalization of ordinary 
(“crisp”) sets. Fuzzy set theory is the theoretical basis underlying information 
processing in fuzzy control systems. From the systems theory’s view, a fuzzy controller 
is a static nonlinear transfer element incorporated into a control loop. This gives rise to 
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methods for analysis and systematic design. Fuzzy systems may perform different tasks 
within an automatic control system leading to different structural schemes. Nowadays, 
fuzzy control systems are successfully applied in many technical and non-technical 
fields. The application of fuzzy control systems is supported by numerous hardware and 
software solutions.   
 
1. Introduction 
 
Fuzzy control has been a new paradigm of automatic control since the introduction of 
fuzzy sets by L. A. Zadeh in 1965. Its rationale can be summarized by the statement of 
Zadeh “As complexity rises, precise statements lose meaning and meaningful 
statements lose precision.” Thus, fuzzy control is an attempt to meet the challenges of 
increasing complexity of the processes to be controlled and of the tasks to be solved by 
automatic control systems.  
 
To be more concrete, fuzzy control may be an advantageous alternative to conventional 
control techniques if  
 

• the process to be controlled exhibits a pronounced nonlinear behavior,  
• no mathematical model of the process is available because the modeling effort is 

unacceptably high or the process is not well understood,  
• expert knowledge plays a key role in controlling the process and should be 

acquired and used for automatic control, or  
• a multidimensional nonlinear relationship (e.g. a control law) should be 

represented such that it can be understood and modified easily. 
 
Fuzzy control systems may be considered under various aspects: A fuzzy controller may 
be seen as a nonlinear controller described by linguistic rules rather than differential 
equations. Or a fuzzy control system may be seen as the implementation of the control 
strategy of a human expert. Understanding the functioning of fuzzy control systems, i.e. 
the information processing taking place within the fuzzy control system and its 
interaction with the plant and other components of the automatic control system requires 
knowledge of fuzzy logic and control theory. 
 
The aim of this chapter, therefore, is  
 

• to introduce the basic ideas of fuzzy control by means of a simple example 
(Section 2),  

• to provide the essential theoretical bases of fuzzy systems (Section 3), and  
• to discuss the control issues of fuzzy control (Section 4).  

 
2. Fuzzy Control - A Simple Example 

2.1. Example 

In the following section, a simple and illustrative example will be used to explain 
information processing in fuzzy systems:  
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Example 1. (Control of room temperature)  The temperature of a room equipped with 
a hot water heating should be controlled by adjusting the position of the valve at the 
radiator (see Fig. 1). A human being would use meta-rules, such as  
If things are not OK but change in the right direction then maintain present settings  
or more specifically  
 
If the temperature is too warm but decreases, then leave valve position unchanged or  
If the temperature is too cold and decreases, then increase the valve opening 
significantly.   
 
Starting from these meta-rules, an experienced user would develop a set of control rules 
which are more specific regarding the linguistic description of the values of 
temperature, temperature change, and change of valve position.  

 

 
 

Figure 1: Schematic representation of the control for Example 1 
 
Fuzzy systems provide a means to represent and process expert knowledge as stated in 
the example above. By treating them as knowledge-based systems, the separation of 
knowledge representation and information processing is realized. Knowledge is 
represented in form of rules and the meaning of the expressions or symbols appearing in 
them. In Example 1, the knowledge consists of the control rules and the meaning of the 
linguistic labels describing the values of temperature, temperature change, and change 
of valve position (valve change for short). The formal concepts for knowledge 
representation in fuzzy systems are linguistic variables and fuzzy IF-THEN rules 
presented in the next subsection.  
 
The inference engine forms the core of the information processing components. As part 
of a control system, a fuzzy system/controller usually processes numerical inputs to 
numerical outputs. Therefore, fuzzification and defuzzification supplement inference:  
 

• Fuzzification: Transformation of numerical values, e.g. measurements, into a 
fuzzy representation of the input situation, 

• Inference: Transformation of the fuzzy input representation into a fuzzy deision, 
and  

• Defuzzification: Transformation of the fuzzy decision into a real decision, e.g. a 
real value of a manipulated variable. 
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Fig. 2 shows a schematic representation of a fuzzy system whose components will be 
described in the following using Example 1 as a basis.   

 
2.2. Fuzzy Sets, Linguistic Variables and Fuzzy IF-THEN Rules 
 
By means of Example 1, it will be shown first how the formal concepts of a linguistic 
variable with their linguistic terms and membership functions and of a fuzzy rule are 
used to represent the available knowledge. The notion of a linguistic variable formalizes 
the practices of many domains to describe the values of certain variables in terms of 
natural language. For Example 1, a linguistic variable is the temperature deviation 
expressing the discrepancy between the desired and the actual room temperature, 
denoted as Dev desired roomT T T= − , with the linguistic terms TOO WARM, OK and TOO 
COLD. A second one is the temperature change TΔ  with the terms {INCR, EQUAL, 
DECR} where INCR stands for INCREASING and DECR for DECREASING. 
 

 
 

Figure 2:  Structure of a fuzzy system with numerical inputs 1 sx … x, ,  and numerical 
outputs 1 vy … y, ,  

 
Temperature change is the difference between the current room temperature and the 
room temperature at the last time instant. Assuming a constant sampling time the 
temperature difference is proportional to the temperature trend. It should be noted that 
the expression of temperature in the example has two different ‘meanings’. 
Specification is done by using different linguistic terms: TOO WARM specifies a 
difference between the desired and the room temperature and INCR a temperature 
change. In contrast to this, the term WARM could characterize the room temperature 
itself.  
 
A third linguistic variable is the valve change y  of the radiator, the output of the fuzzy 
controller. Valve change is an incremental variable, such that the actual valve opening 
results from the previous opening plus valve change both expressed in percent. The term 
set { NB , NS , ZE , PS , PB} uses standardized names with the typical abbreviations B 
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(big), M (medium), N (negative), P (positive), S (small), ZE (zero). These abbreviations 
will be combined in names as NB (negative big) and so on. In practical applications, a 
linguistic variable usually has between two and seven linguistic terms. This corresponds 
to the result of psychological investigations stating that human beings differentiate a 
maximum of five to seven objects at the same time.  
 
The next problem is to define the ‘meaning’ of each linguistic term. In many real-world 
problems, the decision, whether a given x  (e.g. a temperature deviation) satisfies a 
certain property A (e.g. TOO COLD) or not is impossible or not reasonable. In the 
example above, a human being would not consider a small temperature deviation 
(e.g. DevT 0 01 K= . ) as TOO COLD, whereas deviations of 2 K or 5 K probably would 
be felt as TOO COLD, to a certain extent at least. In other words, the membership of x  
in the subset A  should be a matter of degree as x  satisfies the property up to a certain 
degree.  
 
According to set theory, each ordinary subset A  of the universe of discourse X  is 
determined by its characteristic function A X {0 1}μ : → , . This means that A (x) 1μ =  
when x  is an element of A  and zero when it is not. The value of A (x)μ  can be 
interpreted as the truth value of a proposition ‘ x is an element of A ’ relating set theory 
with logic.  
 
Zadeh proposed to introduce a fuzzy set as a generalization of ordinary (“crisp”) sets. 
This means that the proposition of ‘ x is an element of A ’ is no longer true or false, but 
may be true with a certain degree (fuzzy truth value). The characteristic function A (x)μ  
or membership function of the fuzzy (sub-) set A  is allowed to assume real values 
between 0 and 1:  
 

A X [0 1]μ : → , .         (1) 
 
Such fuzzy sets associated with the linguistic terms in Example 1 are depicted in Fig. 3 
and Fig. 4, respectively.   

 

 
 

Figure 3:  Membership functions and fuzzification for temperature deviation (left) and 
temperature change (right) 
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Statements as, for example, ‘ DevT is TOO COLD ’ are called fuzzy propositions as the 
truth value of such a statement is a matter of degree. It is determined by the membership 
degree of DevT  in the fuzzy set labeled TOO COLD. Using connectives such as AND 
and OR, compound fuzzy propositions can be formed.  
 
A fuzzy IF-THEN rule or fuzzy conditional statement is expressed as  
 
IF fuzzy proposition THEN fuzzy proposition< > < >  
 
where <fuzzy proposition> is a simple or compound fuzzy proposition. For Example 1 a 
fuzzy rule of a controller might be ‘IF temperature deviation is TOO COLD AND 
temperature change is INCR THEN valve change is ZE’. The IF part is called premise, 
condition or antecedent, the THEN part conclusion or consequence.  
 
In Example 1, the rule premises contain the two linguistic input variables temperature 
deviation DevT  and temperature change TΔ , while the conclusions contain the linguistic 
output variable valve change y . The complete rule base is shown in Table 1.   
 

      TDev    
         y      TOO WARM            OK            TOO COLD  
   INCR    R1:  NB   R2:  NS    R3:  ZE  

 ΔT    EQUAL    R4:  NS    R5:  ZE    R6:  PS  
    DECR    R7:  ZE    R8:  PS    R9:  PB  

 
Table 1.  Rule base of Example 1 

 
2.3. Fuzzification - From Measurements to a Fuzzy Representation of the Input 
Situation 
 
The inputs of a fuzzy system, especially a fuzzy controller, are (crisp) values of some 
variables, e.g. measurement signals. The vector of these values characterizes an input 
situation which may be the system state, for example. Likewise, rule premises specify 
such input situations, but this specification uses linguistic terms for the values of the 
input variables. In order to determine the degree of fulfillment of the (compound) fuzzy 
proposition in the premise the truth values of the simple propositions have to be known. 
It is the task of fuzzification to provide these values. 
 
If the input variables assume the values of DevT 8  K=  and T 0 2  KΔ = . , fuzzification in 
Example 1 results in  
 

Dev TOO WARM OK TOO COLD

INCR EQUAL DECR

temperature deviation T (8) 0 0 (8) 0 2 (8) 0 8

temperature change T (0 2) 0 1 (0 2) 0 9 (0 2) 0 0

μ μ μ

μ μ μ

: = . , = . , = . ,

Δ : . = . , . = . , . = . .
 
A graphic explanation is depicted in Fig. 3.  
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This transformation is unique, but not one to one in general. In the example, only 
T 2Δ ≥  can be deduced for a given INCR ( T) 1μ Δ = , EQUAL ( T) 0μ Δ = .  

 
2.4. Inference - From a Fuzzy Input Representation to a Fuzzy Decision 
 
Inference essentially consists of three steps, namely,  
 

• aggregation,  
• activation, and  
• accumulation.  

 
Aggregation   A rule premise in general is a compound fuzzy proposition (e.g. an AND 
connection of two propositions with DevT  and TΔ ). Its degree of fulfillment 

kPμ  results 

from the aggregation of the truth values of the simple propositions given by 
fuzzification. The operations have to be chosen in accordance with the connectives 
(AND, OR) between simple propositions. The connective AND is related to the 
intersection, OR to the union of two (fuzzy) sets.   
 

 μB(x)=0 μB(x)=1 
μA(x)=0 μA∩B(x)=0 μA∩B(x)=0 
μA(x)=1 μA∩B(x)=0 μA∩B(x)=1 

 
 μB(x)=0 μB(x)=1 

μA(x)=0 μA∪B(x)=0 μA∪B(x)=1 
μA(x)=1 μA∪B(x)=1 μA∪B(x)=1 

 
Table 2.  Intersection (left) and union (right) of crisp sets defined by their characteristic 

functions 
 
The definitions in Table 2, valid for crisp sets, have to be generalized for fuzzy sets. 
According to the original proposal of Zadeh, the intersection A B∩  and the union 
A B∪  can be defined point-wise using the respective membership degrees  
 

A B A B(x) min{ (x) (x)}μ μ μ∩ = , ,       (2) 
 

A B A B(x) max{ (x) (x)}μ μ μ∪ = , .       (3) 

 
For Example 1, the results of aggregation using a minimum for the AND connective are 
given in Table 3.   
 

   TDev  
  μTOO WARM(TDev)=0.0 μOK(TDev)=0.2 μTOO COLD(TDev)=0.8 
 μINCR(ΔT)=0.1 μP1=0.0 μP2=0.1 μP3=0.1 
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ΔT μEQUAL(ΔT)=0.9 μP4=0.0 μP5=0.2 μP6=0.8 
 μDECR(ΔT)=0.0 μP7=0.0 μP8=0.0 μP9=0.0 
     

 
Table 3.  Aggregation for Example 1 with the minimum operation 

Dev(T 8 K, T 0 2 K)= Δ = .  
 
Activation   A fuzzy IF-THEN rule is a connection of two (compound) fuzzy 
propositions. Hence, this connective has to be interpreted within the framework of set 
theoretic or logical operators. The simplest interpretation is that of the conjunction of 
premise and conclusion, such that the appropriate operation is the minimum. Thus, the 
result of activation 

kCμ  of a rule k  is the minimum of the degree of fulfillment 
kPμ  

and the fuzzy set in the conclusion. In other words, the fuzzy set in the conclusion is 
clipped to

kPμ .  

 
In Example 1, activation leads to nonempty fuzzy sets as depicted in Fig. 4a for rules 
2,3,5, and 6, only.   

 

 
 

Figure 4:  Results of a) activation (only positive for rules 2 3 5 6R R R R, , , ), b) 
accumulation, and c) defuzzification for Example 1 

 
Accumulation   Usually, a rule base is interpreted as a disjunction of rules i.e. rules are 
seen as independent “experts”. Accumulation has the task to combine the individual 
“expert statements”, which actually are fuzzy sets of recommended output values. 
Consequently, an appropriate accumulation operation is the maximum. The maximum 
of the activated rule conclusions 

kY Cmax { (y)}μ  is a fuzzy set (y)μ  over the domain 

Y  of the output variable. The membership degree (y)μ  can be interpreted as the 
degree to which the value y  is suggested by the “expert committee” to be the real 
output value.  
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In Example 1, accumulation results in a fuzzy set (y)μ  as shown in Fig. 4b.  
 
To summarize, inference yields the output fuzzy set as the maximum of all clipped 
fuzzy sets of the linguistic terms of the output variable. The clipping results from 
applying the minimum operation between each output fuzzy set referred to in the rule 
conclusion and the degree of fulfillment of the rule premise. This degree of fulfillment 
is calculated from the results of fuzzification by applying the minimum for the AND 
and maximum for the OR connective. This inference scheme, using minimum and 
maximum operations is called max-min inference.  
 
2.5. Defuzzification - From a Fuzzy Decision to a Real Decision 
 
As inference results in a fuzzy set, the task of defuzzification is to find the numerical 
value which “best” comprehends the information contained in this fuzzy set. A 
frequently used method is the so-called Center-of-Gravity defuzzification (CoG; also 
called Center-of-Area defuzzification COA):  
 

Y

Y

(y)y dy
y

(y)dy

μ

μ
= ,
∫

∫
        (4) 

 
which chooses the y -coordinate of the center of gravity of the area below the 
graph (y)μ . This defuzzification can be interpreted as a weighted mean, i.e. each value 
y is weighted with (y)μ  and the integral in the denominator serves for normalization. In 
Example 1, defuzzification of (y)μ  using Center-of-Gravity defuzzification yields a 
value of 5.83 %, as shown in Fig. 4c.  
 

 
 

Figure 5: Control surface of the fuzzy controller in Example 1 
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The characteristic surface of the fuzzy controller or control surface, that is the graphic 
representation of the function Devy(T T),Δ , is depicted in Fig. 5. Here, the tasks of 
fuzzification, inference, and defuzzification have been performed for all possible 
combinations of DevT T,Δ  in the universe of discourse (with some reasonable 
discretization).  
 
3. Fuzzy Logic-related Issues in Fuzzy Control 
 
In the previous section, only the simplest possible type of a fuzzy system has been 
discussed. In this section the theoretical fundamentals of fuzzy systems are introduced. 
This introduction goes as far as necessary for the understanding of key concepts of 
knowledge representation and information processing in fuzzy systems. Furthermore, it 
is intended to reveal alternatives to choices made in the previous section and again uses 
Example 1 for illustration.  
 
- 
- 
- 
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