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Abstract

We review the development and extensions of the classical total least-squares method and describe algorithms for its

generalization to weighted and structured approximation problems. In the generic case, the classical total least-squares

problem has a unique solution, which is given in analytic form in terms of the singular value decomposition of the data

matrix. The weighted and structured total least-squares problems have no such analytic solution and are currently solved

numerically by local optimization methods. We explain how special structure of the weight matrix and the data matrix can

be exploited for efficient cost function and first derivative computation. This allows to obtain computationally efficient

solution methods. The total least-squares family of methods has a wide range of applications in system theory, signal

processing, and computer algebra. We describe the applications for deconvolution, linear prediction, and errors-in-

variables system identification.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The total least-squares method was introduced by
Golub and Van Loan [1,2] as a solution technique
for an overdetermined system of equations AX � B,
where A 2 Rm�n and B 2 Rm�d are the given data
and X 2 Rn�d is unknown. With m4n, typically
there is no exact solution for X, so that an
approximate one is sought for. The total least-
squares method is a natural generalization of the
least-squares approximation method when the data
in both A and B is perturbed.

The least-squares approximation bX ls is obtained
as a solution of the optimization problem

f bX ls;DBlsg:¼ arg min
X ;DB

kDBkF

subject to AX ¼ B þ DB. ðLSÞ

The rationale behind this approximation method is
to correct the right-hand side B as little as possible
in the Frobenius norm sense, so that the corrected
system of equations AX ¼ bB, bB:¼B þ DB has an
exact solution. Under the condition that vec A is
full column rank, the unique solution bX ls ¼

ðA>AÞ
�1A>B of the optimally corrected system of

equations AX ¼ bBls, bBls:¼B þ DBls is by definition
the least-squares approximate solution of the
original incompatible system of equations.
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The definition of the total least-squares method is
motivated by the asymmetry of the least-squares
method: B is corrected while A is not. Provided that
both A and B are given data, it is reasonable to treat
them symmetrically. The classical total least-squares
problem looks for the minimal (in the Frobenius
norm sense) corrections DA and DB on the given
data A and B that make the corrected system of
equations bAX ¼ bB, bA:¼A þ DA, bB:¼B þ DB solva-
ble, i.e.,

f bX tls;DAtls;DBtlsg:¼ arg min
X ;DA;DB

k½DA DB�kF

subject to ðA þ DAÞX ¼ B þ DB. ðTLS1Þ

The total least-squares approximate solution bX tls

for X is a solution of the optimally corrected

system of equations bAtlsX ¼ bBtls, bAtls:¼A þ DAtls,bBtls:¼B þ DBtls.
The least-squares approximation is statistically

motivated as a maximum likelihood estimator in a
linear regression model under standard assumptions
(zero mean, normally distributed residual with a
covariance matrix that is a multiple of the identity).
Similarly, the total least-squares approximation is a
maximum likelihood estimator in the errors-in-
variables model

A ¼ Ā þ ~A; B ¼ B̄ þ ~B there exists an

X̄ 2 Rn�d such that ĀX̄ ¼ B̄ ðEIVÞ

under the assumption that vec ð½ ~A ~B�Þ is a zero
mean, normally distributed random vector with a
covariance matrix that is a multiple of the identity.
In the errors-in-variables (EIV) model, Ā, B̄ are the

‘‘true data’’, X̄ is the ‘‘true’’ value of the parameter
X, and ~A, ~B consist of ‘‘measurement noise’’.

Our first aim is to review the development and
generalizations of the total least-squares method.
We start in Section 2 with an overview of the
classical total least-squares method. Section 2.1
gives historical notes that relate the total least-
squares method to work on consistent estimation in
the EIV model. Section 2.2 presents the solution of
the total least-squares problem and the resulting
basic computational algorithm. Some properties,
generalizations, and applications of the total least-
squares method are stated in Sections 2.3–2.5.

Our second aim is to present an alternative
formulation of the total least-squares problem as a
matrix low rank approximation problembCtls:¼ arg minbC kC � bCkF subject to rankð bCÞpn,

(TLS2)

which in some respects, described in detail later, has
advantages over the classical one. With C ¼ ½A B�,
the classical total least-squares problem (TLS1) is
generically equivalent to the matrix low rank
approximation problem (TLS2), however, in
certain exceptional cases, known in the literature
as non-generic total least-squares problems, (TLS1)
fails to have a solution, while (TLS2) always has a
solution.

The following example illustrates the geometry
behind the least-squares and total least-squares
approximations.

Example 1 (Geometry of the least-squares and total

least-squares methods). Consider a data matrix
C ¼ ½a b� with m ¼ 20 rows and n þ d ¼ 2 columns.
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Nomenclature

R and Rþ the set of real numbers and non-
negative real numbers

:¼ and :3 left-hand side is defined by the right-
hand side

¼: and 3: right-hand side is defined by the left-
hand side

vec column-wise vectorization of a matrix
C, DC, bC data, correction, and approximation

matrices
C ¼ ½A B� input/output partitioning of the data
c1; . . . ; cm observations, ½c1 � � � cm� ¼ C>

c ¼ colða; bÞ the column vector c ¼ ½a
b
�

B � Rnþd a static model in Rnþd

L linear static model class
B 2 Ln linear static model of dimension at most

n, i.e., a subspace (in Rnþd) of dimension
at most n

X, R, P parameters of input/output, kernel, and
image representations

Bi=oðX Þ input/output representation, see (I/O
repr) in Section 3.1.3

col spanðPÞ image representation, i.e., the space
spanned by the columns of P

kerðRÞ kernel representation, i.e., the right null
space of R
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The data are visualized in the plane: the rows ½ai bi�

of C correspond to the circles in Fig. 1. Finding an
approximate solution bx of the incompatible system
of equations ax � b amounts to fitting the data
points by a non-vertical line passing through the
origin. (The vertical line cannot be represented by
an x 2 R.) The cases when the best fitting line
happens to be vertical correspond to non-generic
problems.

Alternatively, finding a rank-1 approximation bC
of the given matrix C (refer to problem (TLS2))
amounts to fitting the data points ½ai bi� by points
½bai

bbi� (corresponding to the rows of bC) that lie on a
line passing through the origin. Note that now we
do not exclude an approximation by the vertical
line, because approximation points lying on a
vertical line define a rank deficient matrix bC and
problem (TLS2) does not impose further restrictions
on the solution.

The least-squares and total least-squares
methods assess the fitting accuracy in different
ways: the least-squares method minimizes the sum
of the squared vertical distances from the data
points to the fitting line, while the total least-
squares method minimizes the sum of the squared
orthogonal distances from the data points to the
fitting line. Fig. 1 shows the least-squares and
total least-squares fitting lines as well as the data
approximation (the crosses lying on the lines).
In the least-squares case, the data approximationbCls ¼ ½a b þ Dbls� is obtained by correcting the
second coordinate only. In the total least-
squares case, the data approximation bCtls ¼ ½a þ

Datls b þ Dbtls� is obtained by correcting both
coordinates.

In (TLS1) the constraint bAX ¼ bB represents the
rank constraint rankð bCÞpn, via the implication

there exists an X 2 Rn�d such that bAX ¼ bB
) rankð bCÞpn; where bC :¼ ½ bA bB�.

Note, however, that the reverse implication does not
hold in general. This lack of equivalence is the
reason for the existence of non-generic total least-
squares problems. Problem (TLS1) is non-generic
when the rank deficiency of bCtls (an optimal
solution of (TLS2)) cannot be expressed as existence
of linear relations bAX ¼ bB for some X 2 Rn�d . In
Section 3.1, we give an interpretation of the linear
system of equations bAX ¼ bB as an input/output
representation of a linear static model.

Apart from bAX ¼ bB with bC ¼ ½ bA bB�, there are
numerous other ways to represent the rank con-
straint rankð bCÞpn. For example, bAX ¼ bB withbCP ¼ ½ bA bB�, where P is an arbitrary permutation
matrix, i.e., in (TLS2) we can choose to express any
d columns of bC as a linear combination of the
remaining columns in order to ensure rank defi-
ciency of bC. Any a priori fixed selection, however,
leads to non-generic problems and therefore will be
inadequate in certain cases. Of special importance
are the kernel representation R bC> ¼ 0, where
RR> ¼ Id , and the image representation bC> ¼ PL,
where P 2 RðnþdÞ�n, L 2 Rn�m. In contrast to the
input/output representations, the kernel and image
representations are equivalent to rankð bCÞpn.

The representation-free total least-squares pro-
blem formulation (TLS2), described in Section 3, is
inspired by the behavioral approach to system
theory, put forward by Willems in the three part
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Fig. 1. Least-squares and total least-squares fits of a set of m ¼ 20 data points in the plane. �—data points ½ai bi �, �—approximations

½bai
bbi�, solid line—fitting model ba bx ¼ bb, dashed lines—approximation errors.
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remarkable paper [3]. We give an interpretation of
the abstract rank condition as existence of a linear
static model for the given data. Then:

the total least squares method is viewed as a tool
for deriving approximate linear static models.

This point of view is treated in more details for
dynamic as well as static models in [4].

In Sections 3 and 5 we describe the extensions of
the classical total least squares problem to weighted
and structured total least-squares problems and
classify the existing methods according to the
representation of the rank constraint (input/output,
kernel, or image) and the optimization method that
is used for the solution of the resulting parameter
optimization problem. We show that the block-
Hankel structured total least-squares problem is a
kernel problem for approximate modeling by a
linear time-invariant dynamical model. Motivating
examples are the deconvolution problem, the linear
prediction problem, and the EIV system identifica-
tion problem.

2. The classical total least-squares method

2.1. History

Although the name ‘‘total least squares’’ ap-
peared only recently in the literature [1,2], this
fitting method is not new and has a long history in
the statistical literature where it is known as
‘‘orthogonal regression’’, ‘‘errors-in-variables’’,
and ‘‘measurement errors’’. The univariate (n ¼ 1,
d ¼ 1) problem is discussed already in 1877 by
Adcock [5]. Latter on contributions are made by
Adcock [6], Pearson [7], Koopmans [8], Madansky
[9], and York [10]. The orthogonal regression
method has been rediscovered many times, often
independently. About 30 years ago, the technique
was extended by Sprent [11] and Gleser [12] to
multivariate (n41, d41) problems.

More recently, the total least-squares method also
stimulated interest outside statistics. In the field of
numerical analysis, this problem was first studied by
Golub and Van Loan [1,2]. Their analysis, as well as
their algorithm, is based on the singular value
decomposition. Geometrical insight into the proper-
ties of the singular value decomposition brought
Staar [13] independently to the same concept. Van
Huffel and Vandewalle [14] generalized the algo-
rithm of Golub and Van Loan to all cases in
which their algorithm fails to produce a solution,

described the properties of these so-called non-
generic total least-squares problems and proved that
the proposed generalization still satisfies the total
least-squares criteria if additional constraints are
imposed on the solution space. This seemingly
different linear algebraic approach is actually
equivalent to the method of multivariate EIV
regression analysis, studied by Gleser [12]. Gleser’s
method is based on an eigenvalue–eigenvector
analysis, while the total least-squares method uses
the singular value decomposition which is numeri-
cally more robust in the sense of algorithmic
implementation. Furthermore, the total least-
squares algorithm computes the minimum norm
solution whenever the total least-squares solution is
not unique. These extensions are not considered by
Gleser.

In engineering fields, e.g., experimental modal
analysis, the total least-squares technique (more
commonly known as the Hv technique), was also
introduced about 20 years ago by Leuridan et al.
[15]. In the field of system identification, Levin [16]
first studied the problem. His method, called the
eigenvector method or Koopmans–Levin method
[17], computes the same estimate as the total least-
squares algorithm whenever the total least-squares
problem has a unique solution. Compensated least
squares was yet another name arising in this area:
this method compensates for the bias in the
estimator, due to measurement error, and is shown
by Stoica and Söderström [18] to be asymptotically
equivalent to total least squares. Furthermore, in
the area of signal processing, the minimum norm
method Kumaresan and Tufts [19] was introduced
and shown to be equivalent to minimum norm total
least squares, see Dowling and Degroat [20].
Finally, the total least-squares approach is tightly
related to the maximum likelihood principal com-
ponent analysis method introduced in chemometrics
by Wentzell et al. [21,22], see the discussion in
Section 4.2.

The key role of least squares in regression analysis
is the same as that of total least squares in EIV
modeling. Nevertheless, a lot of confusion exists in
the fields of numerical analysis and statistics about
the principle of total least squares and its relation to
EIV modeling. The computational advantages of
total least squares are still largely unknown in the
statistical community, while inversely the concept
of EIV modeling did not penetrate sufficiently well
in the field of computational mathematics and
engineering.
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A comprehensive description of the state of the
art on total least squares from its conception up to
the summer of 1990 and its use in parameter
estimation has been presented in Van Huffel and
Vandewalle [23]. While the latter book is entirely
devoted to total least squares, a second [24] and
third [25] edited books present the progress in total
least squares and in the field of EIV modeling,
respectively, from 1990 till 1996 and from 1996 till
2001.

2.2. Algorithm

The following theorem gives conditions for the
existence and uniqueness of a total least-squares
solution.

Theorem 2 (Solution of the classical total least-

squares problem). Let

C:¼½A B� ¼ USV> where S ¼ diagðs1; . . . ; snþdÞ

be a singular value decomposition of C, s1X � � �

Xsnþd be the singular values of C, and define the

partitionings

V :¼

n d

V11 V 12

V21 V 22

" #
n

d

and S:¼

n d

S1 0

0 S2

" #
n

d

.

A total least-squares solution exists if and only if V22

is non-singular. In addition, it is unique if and only if

snasnþ1. In the case when the total least-squares

solution exists and is unique, it is given bybX tls ¼ �V12V�1
22

and the corresponding total least-squares correction

matrix is

DCtls:¼½DAtls DBtls� ¼ �U diagð0;S2ÞV
>.

In the generic case when a unique total least-
squares solution bX tls exists, it is computed from the
d right singular vectors corresponding to the
smallest singular values by normalization. This
gives Algorithm 1 as a basic algorithm for solving
the classical total least-squares problem (TLS1).
Note that the total least-squares correction matrix
DCtls is such that the total least-squares data
approximationbCtls:¼C þ DCtls ¼ U diagðS1; 0ÞV

>

is the best rank-n approximation of C.

Algorithm 1. Basic total least-squares algorithm.

Input: A 2 Rm�n and B 2 Rm�d .
1: Compute the singular value decomposition

½A B� ¼ USV>.
2: if V22 is non-singular then

3: Set bX tls ¼ �V 12V�1
22 .

4: else
5: Output a message that the problem (TLS1) has
no solution and stop.
end if

Output: bX tls—a total least-squares solution of
AX � B.

Most total least-squares problems which arise in
practice can be solved by Algorithm 1. Extensions of
the basic total least-squares algorithm to problems in
which the total least-squares solution does not exist
or is not unique are considered in detail in [23]. In
addition, it is shown how to speed up the total least-
squares computations directly by computing the
singular value decomposition only partially or
iteratively if a good starting vector is available. More
recent advances, e.g., recursive total least-squares
algorithms, neural based total least-squares algo-
rithms, rank-revealing total least-squares algorithms,
total least-squares algorithms for large scale pro-
blems, etc., are reviewed in [24,25]. A novel
theoretical and computational framework for treat-
ing non-generic and non-unique total least-squares
problems is presented by Paige and Strakos [26].

2.3. Properties

Consider the EIV model and assume that
vecð½ ~A ~B�Þ is a zero mean random vector with a
multiple of the identity covariance matrix. In
addition, assume that limm!1

~A> ~A=m exists and is
a positive definite matrix. Under these assumptions
it is proven [1,27] that the total least-squares
solution bX tls is a weakly consistent estimator of
the true parameter values X̄ , i.e.,

bX tls ! X̄ in probability as m ! 1.

This total least-squares property does not depend on
the distribution of the errors. The total least-squares
correction ½DAtls DBtls�, however, being a rank d

matrix is not an appropriate estimator for the
measurement error matrix ½ ~A ~B� (which is a full rank
matrix with probability one). Note that the least-
squares estimator bX ls is inconsistent in the EIV case.
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In the special case of a single right-hand side
(d ¼ 1) and A full rank, the total least-squares
problem has an analytic expression that is similar to
the one of the least-squares solution

least squares: bxls ¼ ðA>AÞ
�1A>b,

total least squares: bxtls ¼ ðA>A � s2nþ1IÞ�1A>b, ð	Þ

where snþ1 is the smallest singular value of ½A b�.
From a numerical analyst’s point of view, (*) tells
that the total least-squares solution is more ill-
conditioned than the least-squares solution since it
has a higher condition number. The implication is
that errors in the data are more likely to affect the
total least-squares solution than the least-squares
solution. This is particularly true for the worst case
perturbations. In fact, total least-squares is a
deregularizing procedure. However, from a statisti-
cian’s point of view, (*) tells that the total least-
squares method asymptotically removes the bias by
subtracting the error covariance matrix (estimated
by s2nþ1I) from the data covariance matrix A>A.

While least-squares minimizes a sum of squared
residuals, total least-squares minimizes a sum of
weighted squared residuals:

least squares: min
x

kAx � bk2,

total least squares: min
x

kAx � bk2

kxk2 þ 1
.

From a numerical analyst’s point of view, total
least-squares minimizes the Rayleigh quotient.
From a statistician’s point of view, total least-
squares weights the residuals by multiplying them
with the inverse of the corresponding error covar-
iance matrix in order to derive a consistent estimate.

Other properties of total least squares, which
were studied in the field of numerical analysis, are
its sensitivity in the presence of errors on all data
[23]. Differences between the least-squares and total
least-squares solution are shown to increase when
the ratio between the second smallest singular value
of ½A b� and the smallest singular value of A is
growing. In particular, this is the case when the set
of equations Ax � b becomes less compatible, the
vector y is growing in length, or A tends to be rank-
deficient. Assuming independent and identically
distributed errors, the improved accuracy of the
total least-squares solution compared to that of the
least-squares solution is maximal when the ortho-
gonal projection of b is parallel to the singular
vector of A corresponding to the smallest singular

value. Additional algebraic connections and sensi-
tivity properties of the total least-squares and least-
squares problems, as well as other statistical proper-
ties have been described in [23,24].

2.4. Extensions

The statistical model that corresponds to the
basic total least-squares approach is the EIV model
with the restrictive condition that the measurement
errors are zero mean independent and identically
distributed. In order to relax these restrictions,
several extensions of the total least-squares problem
have been investigated. The mixed least-squares–

total least-squares problem formulation allows to
extend consistency of the total least-squares esti-
mator in EIV models, where some of the variables
are measured without error. The data least-squares

problem [28] refers to the special case in which the A

matrix is noisy and the B matrix is exact. When the
errors ½ ~A ~B� are row-wise independent with equal
row covariance matrix (which is known up to a
scaling factor), the generalized total least-squares

problem formulation [29] allows to extend consis-
tency of the total least-squares estimator.

More general problem formulations, such as
restricted total least squares [30], which also allow
the incorporation of equality constraints, have been
proposed, as well as total least-squares problem
formulations using ‘p norms in the cost function.
The latter problems, called total ‘p approximations,
proved to be useful in the presence of outliers.
Robustness of the total least-squares solution is also
improved by adding regularization, resulting in
regularized total least-squares methods [31–35]. In
addition, various types of bounded uncertainties
have been proposed in order to improve robustness
of the estimators under various noise conditions
[36,37].

Similarly to the classical total least-squares
estimator, the generalized total least-squares esti-
mator is computed reliably using the singular value
decomposition. This is no longer the case for more
general weighted total least-squares problems where
the measurement errors are differently sized and/or
correlated from row to row. Consistency of the
weighted total least-squares estimator is proven and
an iterative procedure for its computation is
proposed in [38]. This problem is discussed in more
detail in Section 3.

Furthermore, constrained total least-squares pro-
blems have been formulated. Arun [39] addressed
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the unitarily constrained total least-squares pro-
blem, i.e., AX � B, subject to the constraint that the
solution matrix X is unitary. He proved that this
solution is the same as the solution to the
orthogonal Procrustes problem [40, p. 582]. Abat-
zoglou et al. [41] considered yet another constrained
total least-squares problem, which extends the
classical total least-squares problem to the case
where the errors ½ ~A ~B� are algebraically related. In
this case, the total least-squares solution is no longer
statistically optimal (e.g., maximum likelihood in
the case of normal distribution).

In the so-called structured total least-squares

problems [42], the data matrix ½A B� is structured.
In order to preserve the maximum likelihood
properties of the solution, the total least-squares
problem formulation is extended [43] with the
additional constraint that the structure of the data
matrix ½A B� is preserved in the correction matrix
½DA DB�. Similarly to the weighted total least-
squares problem, the structured total least-squares
solution, in general, has no closed form expression
in terms of the singular value decomposition. An
important exception is the circulant structured total
least squares, which can be solved using the fast
Fourier transform, see [44]. In the general case, a
structured total least-squares solution is searched
via numerical optimization methods. However,
efficient algorithms are proposed in the literature
that exploit the matrix structure on the level of the
computations. This research direction is further
described in Section 5.

Regularized structured total least-squares solu-
tion methods are proposed in [45,46]. Regulariza-
tion turns out to be important in the application of
the structured total least-squares method for image
deblurring [47–49]. In addition, solution methods
for nonlinearly structured total least-squares meth-
ods are developed in [50,51].

2.5. Applications

Since the publication of the singular value
decomposition based total least-squares algorithm
[2], many new total least-squares algorithms have
been developed and, as a result, the number of
applications in total least squares and EIV modeling
has increased in the last decade. Total least squares
is applied in computer vision [52], image reconstruc-
tion [53–55], speech and audio processing [56,57],
modal and spectral analysis [58,59], linear system
theory [60,61], system identification [62–65], and

astronomy [66]. An overview of EIV methods in
system identification is given by Söderström in [67].
In [24,25], the use of total least squares and EIV
models in the application fields are surveyed and
new algorithms that apply the total least-squares
concept are described.

A lot of common problems in system identifica-
tion and signal processing can be reduced to special
types of block-Hankel and block-Toeplitz struc-
tured total least-squares problems. In the field of
signal processing, in particular in vivo magnetic
resonance spectroscopy, and audio coding, new
state-space based methods have been derived by
making use of the total least-squares approach for
spectral estimation with extensions to decimation
and multichannel data quantification [68,69]. In
addition, it has been shown how to extend the least
mean squares algorithm to the EIV context for use
in adaptive signal processing and various noise
environments. Finally, total least-squares applica-
tions also emerge in other fields, including informa-
tion retrieval [70], shape from moments [71], and
computer algebra [72,73].

3. Representation-free total least-squares problem

formulation

An insightful way of viewing the abstract rank
constraint rankðCÞpn is as the existence of a linear
static model for C: rankðCÞpn is equivalent to the
existence of a subspace B 
 Rnþd of dimension at
most n that contains the rows of C.

A subspace B � Rnþd is referred to as a linear

static model. Its dimension n is a measure of
the model complexity: the higher the dimension
the more complex and therefore less useful is the
model B.

The set of all linear static models of dimension at
most n is denoted by Ln. It is a non-convex set and
has special properties that make it a Grassman
manifold.

Let ½c1 � � � cm�:¼C>, i.e., ci is the transposed ith
row of the matrix C and define the shorthand
notation

C 2 B � Rnþd :3 ci 2 B for i ¼ 1; . . . ;m.

We have the following equivalence

rankðCÞpn 3 C 2 B 2 Ln,

which relates the total least-squares problem (TLS2)
to approximate linear static modeling. We restate
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problem (TLS2) with this new interpretation and
notation.

Problem 3 (Total least squares). Given a data
matrix C 2 Rm�ðnþdÞ and a complexity specification
n, solve the optimization problem

fbBtls; bCtlsg:¼ arg min
B2Ln

minbC2B

kC � bCkF. (TLS)

Note that (TLS) is a double minimization
problem. On the inner level is the search for the
best approximation of the given data C in a given
model B. The optimum value of this minimization

M tlsðC;BÞ:¼minbC2B

kC � bCkF (Mtls)

is a measure of the lack of fit between the data and
the model and is called misfit. On the outer level is
the search for the optimal model in the model class
Ln of linear static models with bounded complex-
ity. The optimality of the model is in terms of the
total least-squares misfit function Mtls.

The double minimization structure, described
above, is characteristic for all total least-squares
problems. Since the model B is linear and the
cost function is convex quadratic, the inner mini-
mization can be solved analytically yielding a
closed form expression for the misfit function.
The resulting outer minimization, however, is
a non-convex optimization problem and needs
numerical solution methods. In the case of the
basic total least-squares problem and the general-
ized total least-squares problem, presented in
Section 3.3, the outer minimization can be brought
back to a singular value decomposition computa-
tion. In more general cases, however, one has to
rely on non-convex optimization methods and the
guarantee to compute a global solution quickly and
efficiently is lost.

In order to solve numerically the abstract total
least-squares problem (TLS), we need to parameter-
ize the fitting model. This important issue is
discussed next.

3.1. Kernel, image, and input/output representations

As argued in the Introduction, the representation-
free formulation is conceptually useful. For analy-
sis, however, often it is more convenient to consider
concrete representations of the model, which turn
the abstract problem (TLS) into concrete parameter
optimization problems, such as (TLS1). In this

section, we present three representations of a linear
static model: kernel, image, and input/output. They
give different parameterizations of the model and
are important in setting up algorithms for the
solution of the problem.

3.1.1. Kernel representation

Let B 2 Ln, i.e., B is an n-dimensional subspace
of Rnþd . A kernel representation of B is given by a
system of equations Rc ¼ 0, such that

B ¼ f c 2 Rnþd jRc ¼ 0g¼: kerðRÞ.

The matrix R2Rg�ðnþdÞ is a parameter of the modelB.
The parameter R is not unique. There are two

sources for the non-uniqueness:

1. R might have redundant rows, and
2. for a full rank matrix U, kerðRÞ ¼ kerðURÞ.

The parameter R having redundant rows is related
to the minimality of the representation. For a given
linear static model B, the representation Rc ¼ 0 of
B is minimal if R has the minimal number of rows
among all parameters R that define a kernel
representation of B. The kernel representation,
defined by R, is minimal if and only if R is full
row rank.

Because of item 2, a minimal kernel representa-
tion is still not unique. All minimal representations,
however, are related to a given one via a pre-
multiplication of the parameter R with a non-
singular matrix U. In a minimal kernel representa-
tion, the rows of R are a basis for B?, the
orthogonal complement of B, i.e.,

B? ¼ row spanðRÞ.

The choice of R is non-unique due to the non-
uniqueness in the choice of basis of B?.

The minimal number of independent linear
equations necessary to define a linear static model
B is d, i.e., in a minimal representation B ¼ kerðRÞ

with row dimðRÞ ¼ d.

3.1.2. Image representation

The dual of the kernel representation B ¼ kerðRÞ

is the image representation

B ¼ fc 2 Rnþd j c ¼ Pl; l 2 Rng¼:col spanðPÞ.

Again for a given B 2 Ln an image representation
B ¼ col spanðPÞ is not unique because of possible
non-minimality of P and the choice of basis.
The representation is minimal if and only if P is
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a full column rank matrix. In a minimal image
representation, col dimðPÞ ¼ dimðBÞ and the col-
umns of P form a basis for B. Clearly col spanðPÞ ¼
col spanðPUÞ, for any non-singular matrix U 2 Rn�n.
Note that

kerðRÞ ¼ col spanðPÞ ¼ B 2 Ln ) RP ¼ 0,

which gives a link between the parameters P and R.

3.1.3. Input/output representation

Both, the kernel and the image representations,
treat all variables on an equal footing. In contrast,
the more classical input/output representation

Bi=oðX Þ:¼fc¼:colða; bÞ 2 Rnþd jX>a ¼ bg

(I/O repr)

distinguishes free variables a 2 Rn, called inputs,
and dependent variables b 2 Rd , called outputs. In
an input/output representation, a can be chosen
freely, while b is fixed by a and the model. Note that
for repeated observations C> ¼ ½c1 � � � cm� the
statement C 2 Bi=oðX Þ is equivalent to the linear
system of equations AX ¼ B, where ½A B�:¼C with
A 2 Rm�n and B 2 Rm�d .

The partitioning c ¼ colða; bÞ gives an input/
output partitioning of the variables: the first
n:¼ dimðaÞ variables are inputs and the remaining
d:¼ dimðbÞ variables are outputs. An input/output
partitioning is not unique. Given a kernel or image
representation, finding an input/output partitioning
is equivalent to selecting a d � d full rank submatrix
of R or an n � n full rank submatrix of P. In fact,
generically, any splitting of the variables into a
group of d variables (outputs) and a group of
remaining variables (inputs), defines a valid input/
output partitioning. In non-generic cases certain
partitionings of the variables into inputs and out-
puts are not possible.

Note that in (I/O repr), the first n variables are
fixed to be inputs, so that given X, the input/output
represent Bi=oðX Þ is fixed and vice versa, given
B 2 Ln, the parameter X (if it exists) is unique.
Thus, as opposed to the parameters R and P in the
kernel and the image representations, the parameter
X in the input/output representation (I/O repr) is
unique.

Consider the input/output Bi=oðX Þ, kernel kerðRÞ,
and image col spanðPÞ representations of B 2 Ln

and define the partitionings

R¼:½Ri Ro�; Ro 2 Rd�d and

P¼:
Pi

Po

" #
; Pi 2 Rn�n.

The links among the parameters X, R, and P are
summarized in Fig. 2.

3.2. Solution of the total least-squares problem

Approximation of the data matrix C with a model
B in the model class Ln is equivalent to finding a
matrix bC 2 Rm�ðnþdÞ with rank at most n. In the case
when the approximation criterion is kC � bCkF
(total least-squares problem) or kC � bCk2, the
problem has a solution in terms of the singular
value decomposition of C. The result is known as
the Eckart–Young–Mirsky low-rank matrix ap-
proximation theorem [74]. We state it in the next
lemma.

Lemma 4 (Matrix approximation lemma). Let C ¼

USV> be the singular value decomposition of C 2

Rm�ðnþdÞ and partition the matrices U,
S¼:diagðs1; . . . ; snþdÞ, and V as follows:

n d

U¼: ½U1 U2 �m
;

n d

S¼:
S1 0

0 S2

" #
n

d

and

n d

V¼: ½V 1 V2 � n þ d:
ðSVDPRTÞ

Then the rank-n matrix bC	 ¼ U1S1V>
1 is such that

kC � bC	
kF ¼ min

rankðbC Þpn

kC � bCkF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2nþ1 þ � � � þ s2nþd

q
.

The solution bC	
is unique if and only if snþ1asn.

The solution of the total least-squares problem
(TLS) trivially follows from Lemma 4.

Theorem 5 (Solution of the total least-squares

problem). Let C ¼ USV> be the singular value
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tions of B 2 Ln.
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decomposition of C and partition the matrices U, S,
and V as in (SVDPRT). Then a total least-squares

approximation of C in Ln isbCtls ¼ U1S1V
>
1 ;

bBtls ¼ kerðV>
2 Þ ¼ col spanðV 1Þ,

and the total least-squares misfit is

M tlsðC;BÞ ¼ kS2kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2nþ1 þ � � � þ s2nþd

q
where

S2¼:diagðsnþ1; . . . ;snþd Þ.

A total least-squares approximation always exists. It

is unique if and only if snasnþ1.

Note 6 (Non-generic total least-squares problems). The
optimal approximating model bBtls might have no
input/output representation (I/O repr). In this case,
the optimization problem (TLS1) has no solution.
By suitable permutation of the variables, however,
(TLS1) can be made solvable, so that bX tls exists andbBtls ¼ Bi=oð bX tlsÞ.

The issue of whether the total least-squares
problem is generic or not is not related to the
approximation of the data per se but to the
possibility of representing the optimal model bBtls

in the form (I/O repr), i.e., to the possibility of

imposing a given input/output partition on bBtls.

3.3. Generalized total least-squares problem

Let W ‘ 2 Rm�m and W r 2 RðnþdÞ�ðnþdÞ be given
positive definite matrices and define the following
generalized total least-squares misfit function

MgtlsðC;BÞ ¼ minbC2B

k
ffiffiffiffiffiffiffi
W ‘

p
ðC � bCÞ

ffiffiffiffiffiffiffi
W r

p
kF.

(Mgtls)

(W ‘ allows for a row weighting and W r for a
column weighting in the cost function.) The result-
ing approximation problem is called generalized
total least-squares problem.

Problem 7 (Generalized total least squares). Given a
data matrix C 2 Rm�ðnþdÞ, positive definite weight
matrices W ‘ and W r, and a complexity specification
n, solve the optimization problem

fbBgtls; bCgtlsg ¼ arg minbB2Ln

MgtlsðC;BÞ. (GTLS)

The solution of the generalized total least-squares
problem can be obtained from the solution of a total
least-squares problem for a modified data matrix.

Theorem 8 (Solution of the generalized total least-

squares problem). Define the modified data matrix

Cm:¼
ffiffiffiffiffiffiffi
W ‘

p
C

ffiffiffiffiffiffiffi
W r

p
,

and let bCm;tls, bBm;tls ¼ kerðRm;tlsÞ ¼ col spanðPm;tlsÞ

be a total least-squares approximation of Cm in Ln.
Then a solution of the generalized total least-squares

problem (GTLS) isbCgtls ¼ ð
ffiffiffiffiffiffiffi
W ‘

p
Þ
�1 bCm;tlsð

ffiffiffiffiffiffiffi
W r

p
Þ
�1,

bBgtls ¼ kerðRm;tls

ffiffiffiffiffiffiffi
W r

p
Þ ¼ col spanðð

ffiffiffiffiffiffiffi
W r

p
Þ
�1Pm;tlsÞ

and the corresponding generalized total least-squares

misfit is MgtlsðC;BgtlsÞ ¼ M tlsðCm;Bm;tlsÞ. A general-

ized total least-squares solution always exists. It is

unique if and only if bBm;tls is unique.

Robust algorithms for solving the generalized
total least-squares problem without explicitly com-
puting the inverses ð

ffiffiffiffiffiffiffi
W ‘

p
Þ
�1 and ð

ffiffiffiffiffiffiffi
W r

p
Þ
�1 are

proposed in [29,30,75]. These algorithms give better
accuracy when the weight matrices are nearly rank
deficient. In addition, they can treat the singular
case, which implies that some rows and/or columns
of C are considered exact and are not modified in
the solution bC.

If the matrices W ‘ and W r are diagonal, i.e.,
W ‘ ¼ diagðw‘;1; :::;w‘;mÞ, where w‘ 2 Rm

þ and
W r ¼ diagðwr;1; :::;wr;nþdÞ, where wl 2 Rnþd

þ the gen-
eralized total least-squares problem is called scaled

total least-squares.

4. Weighted total least squares

For a given positive definite weight matrix W 2

RmðnþdÞ�mðnþdÞ define the weighted matrix norm

kCkW :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vec>ðC>ÞWvecðC>Þ

q
and the weighted total least-squares misfit function

MwtlsðC;BÞ:¼ minbC2B

kC � bCkW . (Mwtls)

The approximation problem with weighted total
least-squares misfit function is called the weighted
total least-squares problem.

Problem 9 (Weighted total least squares). Given a
data matrix C 2 Rm�ðnþdÞ, a positive definite weight
matrix W, and a complexity specification n, solve
the optimization problem

fbBwtls; bCwtlsg:¼ arg min
B2Ln

MwtlsðC;BÞ. (WTLS)
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The motivation for considering the weighted total
least-squares problem is that it defines the max-
imum likelihood estimator for the EIV model when
the measurement noise ~C ¼ ½ ~A ~B� is zero mean,
normally distributed, with a covariance matrix

covðvecð ~C
>
ÞÞ ¼ s2W�1, (**)

i.e., the weight matrix W is up to a scaling factor s2

the inverse of the measurement noise covariance
matrix.

Note 10 (Element-wise weighted total least-squares). The
special case when the weight matrix W is diagonal is
called element-wise weighted total least squares. It
corresponds to an EIV problem with uncorrelated
measurement errors. Let W ¼ diagðw1; . . . ;wmðnþdÞÞ

and define the m � ðn þ dÞ weight matrix S by
Sij :¼wði�1ÞðnþdÞþj. Denote by � the element-wise
product A � B ¼ ½aijbij�. Then

kDCkW ¼ kS� DCkF.

Note 11 (Total least squares as an unweighted

weighted total least squares). The extreme special
case when W ¼ I is called unweighted. Then the
weighted total least-squares problem reduces to
the total least-squares problem. The total least-
squares misfit M tls weights equally all elements
of the correction matrix DC. It is a natural choice
when there is no prior knowledge about the data.
In addition, the unweighted case is computa-
tionally easier to solve than the general weighted
case.

Special structure of the weight matrix W results in
special weighted total least-squares problems. Fig. 3
shows a hierarchical classification of various pro-
blems considered in the literature. From top to
bottom the generality of the problems decreases: on
the top is a weighted total least-squares problem for
a general positive semi-definite weight matrix and
on the bottom is the classical total least-squares
problem. In between are weighted total least-
squares problems with (using the stochastic termi-
nology) uncorrelated errors among the rows, among
the columns, and among all elements (element-wise
weighted total least-squares case). Row-wise and
column-wise uncorrelated weighted total least-
squares problems, in which the row or column
weight matrices are equal are generalized total least-
squares problems with, respectively, W ‘ ¼ I and
W r ¼ I . In order to express easily the structure of
the weight matrix in the case of column-wise

uncorrelated errors, we introduce the weight matrix
W̄ as follows: covðvecð ~CÞÞ ¼ s2W̄�1

; compare with
(**), where ~C is transposed.

With W ¼ I , (WTLS) coincides with the total
least-squares problem (TLS). Except for the special
case of generalized total least squares, however, the
weighted total least-squares problem has no closed
form solution in terms of the singular value
decomposition. As an optimization problem it is
non-convex, so that the currently available solution
methods do not guarantee convergence to a global
optimum solution. In the rest of this section, we give
an overview of solution methods for the weighted
total least-squares problem, with emphasis on the
row-wise weighted total least-squares case, i.e.,
when the weight matrix W is block diagonal
W ¼ diagðW 1; . . . ;W mÞ, W i 2 RðnþdÞ�ðnþdÞ, W i40.
In the EIV setting, this assumption implies that the
measurement errors ~ci and ~cj are uncorrelated for all
i; j ¼ 1; . . . ;m, iaj, which is a reasonable assump-
tion for most applications.

Similarly to the total least-squares and general-
ized total least-squares problems, the weighted total
least-squares problem is a double minimization
problem. The inner minimization is the search for
the best approximation of the data in a given model
and an outer minimization is the search for the
model. First, we solve the inner minimization
problem—the misfit computation.

4.1. Best approximation of the data by a given model

Since the model is linear, (Mwtls) is a convex
optimization problem with an analytic solution. In
order to give explicit formulas for the optimal
approximation bCwtls and misfit MwtlsðC;BÞ, how-
ever, we need to choose a particular parameteriza-
tion of the given model B. We state the results for
the kernel and the image representations. The
results for the input/output representation follow
from the given ones by the substitutions R7!½X> � I �

and P7!½ I
X>�.

Theorem 12 (Weighted total least-squares misfit

computation, kernel representation version). Let

kerðRÞ be a minimal kernel representation of

B 2 Ln. The best weighted total least-squares

approximation of C in B, i.e., the solution of (Mwtls),
is

bcwtls;i ¼ ðI � W�1
i R>ðRW�1

i R>Þ
�1RÞci

for i ¼ 1; . . . ;m
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with the corresponding misfit

MwtlsðC;kerðRÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

c>i R>ðRW�1
i R>Þ

�1Rci

s
. ðMwtlsRÞ

The image representation is dual to the kernel
representation. Correspondingly, the misfit compu-
tation with kernel and with image representations of
the model are dual problems. The kernel represen-
tation leads to a least norm problem and the image
representation leads to a least-squares problem.

Theorem 13 (Weighted total least-squares misfit

computation, image representation version). Let

col spanðPÞ be a minimal image representation of

B 2 Ln. The best weighted total least-squares

approximation of C in B is

bcwtls;i ¼ PðP>W iPÞ
�1P>W ici for i ¼ 1; . . . ;m

with the corresponding misfit

MwtlsðC; col spanðPÞÞ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

c>i W iðI � PðP>W iPÞ
�1P>W iÞci

s
.

ðMwtlsPÞ

4.2. Optimization over the model parameters

The remaining problem—the minimization with
respect to the model parameters is a non-convex
optimization problem that in general has no closed
form solution. For this reason numerical optimiza-
tion methods are employed for its solution.

Special optimization methods for the weighted
total least-squares problem are proposed in
[21,42,76–78]. The Riemannian singular value de-
composition framework of De Moor [42] is derived
for the structured total least-squares problem but
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WTLS

W ≥ 0

Row-wise WTLS

W = diag (W1,...,Wm)

Column-wise WTLS

W̄ = diag (W1,..., Wn+d)¯ ¯

Row-wise GTLS

W = diag (Wr,...,Wr)

m

EWTLS

W = diag(w)
 

Column-wise GTLS

¯

n+d

Row-wises caled TLS

W = diag (col (wr,...,wr))

m

Column-wises caled TLS

¯
 

n+d

TLS

W = �2Im (n+d)

  

TLS — total least squares GTLS — generalized total least squares

WTLS  — weighted total least squares EWTLS — element-wise weighted total least squares

Fig. 3. Hierarchy of weighted total least-squares problems according to the structure of the weight matrix W. On the left side are weighted

total least-squares problems with row-wise uncorrelated measurement errors and on the right side are weighted total least-squares

problems with column-wise uncorrelated measurement errors.
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includes the weighted total least-squares problem
with diagonal weight matrix and d ¼ 1 as a special
case. The restriction to more general weighted total
least-squares problems comes from the fact that
the Riemannian singular value decomposition
framework is derived for matrix approximation
problems with rank reduction by one. De Moor
proposed an algorithm resembling the inverse
power iteration algorithm for computing the solu-
tion. The method, however, has no proven conver-
gence properties.

The maximum likelihood principle component
analysis method of Wentzell et al. [21] is an
alternating least-squares algorithm. It applies to
the general weighted total least-squares problems
and is globally convergent, with linear convergence
rate. The method of Premoli and Rastello [76] is a
heuristic for solving the first order optimality
condition of (WTLS). A solution of a nonlinear
equation is sought instead of a minimum point of
the original optimization problem. The method is
locally convergent with superlinear convergence
rate. The region of convergence around a minimum
point could be rather small in practice. The
weighted low rank approximation framework of
Manton et al. [78] proposes specialized optimization
methods on a Grassman manifold. The least-
squares nature of the problem is not exploited by
the algorithms proposed in [78].

The Riemannian singular value decomposition,
maximum likelihood principle component analy-
sis, Premoli–Rastello, and weighted low rank
approximation methods differ in the parameter-
ization of the model and the optimization
algorithm used, see Table 1.

5. Structured total least squares

The total least-squares problem is a tool for
approximate modeling by a static linear model.
Similarly, the structured total least-squares problem
with block-Hankel structured data matrix is a tool for
approximate modeling by a linear time-invariant
dynamic model. In order to show how the block-
Hankel structure occurs, consider a difference equa-
tion represented by an linear time-invariant model

R0wt þ R1wtþ1 þ � � � þ Rlwtþl ¼ 0. (KER)

Here R0; . . . ;Rl are the model parameters and
the integer l is the lag of the equation. For

t ¼ 1; . . . ;T � l, the difference equation (KER) is
equivalent to the block-Hankel structured system of
equations

½R0 R1 � � � Rl �

w1 w2 � � � wT�l

w2 w3 � � � wT�lþ1

..

. ..
. ..

.

wlþ1 wlþ2 � � � wT

2666664

3777775
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hl ðwÞ

¼ 0.

(Hank eqn)

Thus the constraint that a time series w ¼

ðwð1Þ; . . . ;wðTÞÞ is a trajectory of the linear time-
invariant model implies rank deficiency of the block-
Hankel matrix HlðwÞ.

Next we show three typical examples that
illustrate the occurrence of structured system of
equations in approximate modeling problems.

5.1. Examples

5.1.1. Deconvolution

The convolution of the (scalar) sequences

ð. . . ; a�1; a0; a1; . . .Þ and ð. . . ; x�1; x0; x1; . . .Þ

is the sequence ð. . . ; b�1; b0; b1; . . .Þ defined as
follows:

bi ¼
X1

j¼�1

xjai�j. (CONV)

Assume that xj ¼ 0 for all jo1 and for all j4n.
Then (CONV) for i ¼ 1; . . . ;m can be written as the
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Table 1

Model representations and optimization algorithms used in the

methods of [21,22,42,76,78]

Method Representation Algorithm

Riemannian

singular value

decomposition

Kernel Inverse power

iteration

Maximum

likelihood

principle

component

analysis

Image Alternating

projections

Premoli–Rastello Input/output Iteration based on

heuristic

linearization

Weighted low rank

approximation

Kernel Newton method
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following structured system of equations:

a0 a�1 � � � a1�n

a1 a0 � � � a2�n

..

. ..
. ..

.

am�1 amþn�2 � � � am�n

266664
377775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x1

x2

..

.

xn

266664
377775

|fflffl{zfflffl}
x

¼

b1

b2

..

.

bm

266664
377775

|fflfflffl{zfflfflffl}
b

.

(CONV0)

Note that the matrix A is Toeplitz structured and is
parameterized by the vector a ¼ colða1�n; . . . ; am�1Þ

2 Rmþn�1.
The aim of the deconvolution problem is to find

x, given a and b. With exact data the problem boils
down to solving the system of equations (CONV0).
By construction it has an exact solution. Moreover
the solution is unique whenever A is of full column
rank, which can be translated to a persistency of
excitation condition on a, see [79].

The deconvolution problem is more realistic and
more challenging when the data a; b are perturbed.
We assume that m4n, so that the system of
equations (CONV0) is overdetermined. Because
both a and b are perturbed and the A matrix is
structured, the deconvolution problem is a total
least-squares problem with structured data matrix
C ¼ ½A b�, A Toeplitz and b unstructured.

5.1.2. Linear prediction

In many signal processing applications the sum of
damped exponentials model

byt ¼
Xl

i¼1

cie
diteiðoi tþfiÞ where i:¼

ffiffiffiffiffiffiffi
�1

p
(SDE)

is considered. Given an observed sequence
ðyd;1; . . . ; yd;T Þ (‘‘d’’ stands for data), the aim is to
find parameters fci; di;oi;fig

l
i¼1 of a sum of damped

exponentials model, such that the signal by given by
(SDE) is close to the observed one, e.g.,

min

yd;1

..

.

yd;T

26664
37775�

by1

..

.

byT

2664
3775

���������

���������.
Note that the sum of damped exponentials model

is just an autonomous linear time-invariant model,
i.e., by is a free response of an linear time-invariant
system. Therefore by satisfies a homogeneous linear

difference equation

byt þ
Xl

t¼1

atbytþt ¼ 0. (LP)

Approximating yd by a signal by that satisfies (LP)
is a linear prediction problem, so modeling yd

as a sum of damped exponentials is equivalent
to the linear prediction problem. Of course, there
is a one-to-one relation between the initial

conditions by0; . . . ; by�lþ1 and parameters faig
l
i¼1 of

(LP) and the parameters fci; di;oi;fig
l
i¼1 of

(SDE).
For a time horizon t ¼ 1; . . . ;T , with T4l þ 1,

(LP) can be written as the structured system of
equationsby1 by2 . . . bylby2 by3 . . . bylþ1

..

. ..
. ..

.

bym bymþ1 � � � byT�1

2666664

3777775
a1

a2

..

.

al

266664
377775 ¼ �

bylþ1bylþ2

..

.

byT

2666664

3777775,
where m:¼T � l. Therefore, the Hankel matrix
Hlþ1ðbyÞ with l þ 1 columns, constructed from by is
rank deficient. Conversely, if Hlþ1ðbyÞ has a one-
dimensional left kernel, then by satisfies the linear
recursion (LP). Therefore, the linear pre-
diction problem is the problem of finding the
smallest in some sense (e.g., 2-norm) correction Dy

on the given sequence yd that makes a block-
Hankel matrix Hlþ1ðbyÞ constructed from the
corrected sequence by:¼yd � Dy rank deficient.
This is an structured total least-squares problem
Ax � b with Hankel structured data matrix
C ¼ ½A b�.

5.1.3. EIV identification

Consider the linear time-invariant system de-
scribed by the difference equation

byt þ
Xl

t¼1

atbytþt ¼
Xl

t¼0

btbutþt (DE)

and define the parameter vector

x:¼colðb0; . . . ; bl ;�a0; . . . ;�al�1Þ 2 R2lþ1.

Given a set of input/output data ðud;1; yd;1Þ; . . . ;
ðud;T ; yd;T Þ and an order specification l, we
want to find the parameter x of a system that fits
the data.
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For a time horizon t ¼ 1; . . . ;T , (DE) can be
written as the structured system of equations

(DE
0
)

where m:¼T � l. We assume that the time horizon is
large enough to ensure m42l þ 1. The system (DE0)
is satisfied for exact data and a solution is the true
value of the parameter x. Moreover, under addi-
tional assumption on the input (persistency of
excitation) the solution is unique.

For perturbed data an approximate solution is
sought and the fact that the system of equation
(DE0) is structured suggests the use of the structured
total least-squares method. Under appropriate
conditions for the data generating mechanism an
structured total least-squares solution provides a
maximum likelihood estimator. The structure aris-
ing in the EIV identification problem is
C ¼ ½H>

l ðudÞ H>
l ðydÞ�.

5.2. History of the structured total least-squares

problem

The origin of the structured total least-squares
problem dates back to the work of Aoki and Yue
[80], although the name ‘‘structured total least-
squares’’ appeared only 23 years later in the
literature [42]. Aoki and Yue consider a single input
single output system identification problem, where
both the input and the output are noisy (EIV
setting) and derive a maximum likelihood solution.
Under the normality assumption for the measure-
ment errors, a maximum likelihood estimate turns
out to be a solution of the structured total least-
squares problem. Aoki and Yue approach the
optimization problem in a similar way to the one
presented in Section 5.3: they use classical nonlinear
least-squares minimization methods for solving an
equivalent unconstrained problem.

The structured total least-squares problem occurs
frequently in signal processing applications. Cad-
zow [81], Bresler and Macovski [82] propose
heuristic solution methods that turn out to be
suboptimal with respect to the ‘2-optimality criter-
ion, see Tufts and Shah [83] and De Moor [61,
Section V]. These methods, however, became
popular because of their simplicity. For example,

the method of Cadzow is an iterative method
that alternates between unstructured low rank
approximation and structure enforcement, thereby
only requiring singular value decomposition
computations and manipulation of the matrix
entries.

Tufts and Shah propose in [83], a non-iterative

method for Hankel structured total least-squares
approximation that is based on perturbation analy-
sis and provides nearly optimal solution for high
signal-to-noise ratio (SNR). In a statistical setting,
this method achieves the Cramer–Rao lower bound
asymptotically as the SNR tends to infinity. Non-
iterative methods for solving the linear prediction
problem (which, as shown in Section 5.1, is
equivalent to Hankel structured total least-squares
problem) are proposed by Tufts and Kumaresan in
their seminal work [84,85].

Abatzoglou et al. [41] are considered to be the
first who formulated a structured total least-squares
problem. They called their approach constrained
total least squares and motivate the problem as an
extension of the total least-squares method to
matrices with structure. The solution approach
adopted by Abatzoglou et al. is closely related to
the one of Aoki and Yue. Again an equivalent
optimization problem is derived, but it is solved
numerically using a Newton-type optimization
method.

Shortly after the publication of the work on the
constrained total least-squares problem, De Moor
[42] lists many applications of the structured total
least-squares problem and outlines a new frame-
work for deriving analytical properties and numer-
ical methods. His approach is based on the
Lagrange multipliers and the basic result is an
equivalent problem, called Riemannian singular
value decomposition, which can be considered as a
‘‘nonlinear’’ extension of the classical singular value
decomposition. As an outcome of the new problem
formulation, an iterative solution method based on
the inverse power iteration is proposed.

Another algorithm for solving the structured total
least-squares problem (even with ‘1 and ‘1 norm in
the cost function), called structured total least
norm, is proposed by Rosen et al. [86]. In contrast
to the approaches of Aoki, Yue and Abatzoglou
et al., Rosen et al. solve the problem in its original
formulation. The constraint is linearized around the
current iteration point, which results in a linearly
constrained least-squares problem. In the algorithm
of Rosen et al., the constraint is incorporated in the
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cost function by adding a multiple of its residual
norm.

The weighted low rank approximation frame-
work of Manton et al. [78] has been extended in
[87,88] to structured low rank approximation
problems. All problem formulations and solution
methods cited above, except for the ones in the
structured low rank approximation framework, aim
at rank reduction of the data matrix C by one.
A generalization of the algorithm of Rosen et al. to
problems with rank reduction by more than one is
proposed by Van Huffel et al. [89]. It involves,
however, Kronecker products that unnecessary
inflate the dimension of the involved matrices.

When dealing with a general affine structure the
constrained total least squares, Riemannian singular
value decomposition, and structured total least
norm methods have cubic computational complex-
ity per iteration in the number of measurements.
Fast algorithms with linear computational complex-
ity are proposed by Mastronardi et al. [90–92] for
special structured total least-squares problems with
data matrix C ¼ ½A b� that is Hankel or composed
of a Hankel block A and an unstructured column b.
They use the structured total least norm approach
but recognize that a matrix appearing in the kernel
subproblem of the algorithm has low displacement
rank. This structure is exploited using the Schur
algorithm.

The structured total least-squares solution
methods outlined above point out the following
issues:

� Structure: The structure specification for the
data matrix C varies from general affine to
specific affine, like Hankel/Toeplitz, or Hankel/
Toeplitz block augmented with an unstructured
column.

� Rank reduction: All methods, except for [87–89],
reduce the rank of the data matrix by one.

� Computational efficiency: The efficiency varies
from cubic for the methods that use a general
affine structure to linear for the efficient methods
of Lemmerling et al. [90] and Mastronardi et al.
[91] that use a Hankel/Toeplitz type structure.

Efficient algorithms for problems with block-
Hankel/Toeplitz structure and rank reduction with
more than one are proposed by Markovsky et al.
[93–95]. In addition, a numerically reliable and
robust software implementation is available [96].

5.3. Structured total least-squares problem

formulation and solution method

Let S : Rnp ! Rm�ðnþdÞ be an injective function.
A matrix C 2 Rm�ðnþdÞ is said to be S-structured if
C 2 imageðSÞ. The vector p for which C ¼ SðpÞ is
called the parameter vector of the structured matrix
C. Respectively, Rnp is called the parameter space of
the structure S.

The aim of the structured total least-squares
problem is to perturb as little as possible a given
parameter vector p by a vector Dp, so that the
perturbed structured matrix Sðp þ DpÞ becomes
rank deficient with rank at most n.

Problem 14 (Structured total least squares). Given a
data vector p 2 Rnp , a structure specification
S : Rnp ! Rm�ðnþdÞ, and a rank specification n,
solve the optimization problem

Dpstls ¼ argmin
Dp

kDpk subject to rankðSðp � DpÞÞpn.

In what follows, we will use the input/output
representation

Sðp � DpÞX ext ¼ 0; X ext:¼
X

�I

� �
of the rank constraint, so that the structured total
least-squares problem becomes the following para-
meter optimization problembX stls ¼ argmin

X ;Dp
kDpk

subject to Sðp � DpÞ
X

�I

" #
¼ 0. ðSTLSXÞ

The structured total least-squares problem is said
to be affine structured if the function S is affine,
i.e.,

SðpÞ ¼ S0 þ
Xnp

i¼1

Sipi for all p 2 Rnp

and for some Si; i ¼ 1; . . . ; np. ðAFFÞ

In an affine structured total least-squares problem,
the constraint Sðp � DpÞX ext ¼ 0 is bilinear in the
decision variables X and Dp.

Lemma 15. Let S : Rnp ! Rm�ðnþdÞ be an affine

function. Then

Sðp � DpÞX ext ¼ 0 3 GðX ÞDp ¼ rðX Þ,
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where

GðX Þ:¼½vecððS1X extÞ
>
Þ � � � vecððSnp

X extÞ
>
Þ� 2 Rmd�np ,

(G)

and

rðX Þ:¼vecððSðpÞX extÞ
>
Þ 2 Rmd .

Using Lemma 15, we rewrite the affine structured
total least-squares problem as follows:

min
X

min
Dp

kDpk subject to GðX ÞDp ¼ rðX Þ

� �
.

(STLS
0

x)

The inner minimization problem has an analytic
solution, which allows to derive an equivalent
optimization problem.

Theorem 16 (Equivalent optimization problem for

affine structured total least squares). Assuming that

npXmd, the affine structured total least squares

problem (STLSX ) is equivalent to

min
X

r>ðX ÞGyðX ÞrðX Þ where GðX Þ:¼GðX ÞG>ðX Þ,

(STLS
00

X )

and Gy is the pseudoinverse of G.

The significance of Theorem 16 is that the
constraint and the decision variable Dp in problem
(STLSX ) are eliminated. Typically the number of
elements nd in X is much smaller than the number of
elements np in the correction Dp. Thus the reduction
in the complexity is significant.

The equivalent optimization problem (SRLS00X ) is
a nonlinear least-squares problem, so that classical
optimization methods can be used for its solution.
The optimization methods require a cost function
and first derivative evaluation. In order to evaluate
the cost function for a given value of the argument
X, we need to form the weight matrix GðX Þ and to
solve the system of equations GðX ÞyðX Þ ¼ rðX Þ.
This straightforward implementation requires
Oðm3Þ floating point operation (flops). For large m

(the applications that we aim at) this computational
complexity becomes prohibitive.

It turns out, however, that for the special case of
affine structures

SðpÞ ¼ ½C1 . . . Cq� for all p 2 Rnp

where Cl ; for l ¼ 1; . . . ; q; is

block�Toeplitz; block�Hankel,

unstructured; or exact. ðAÞ

the weight matrix GðX Þ has a block-Toeplitz and
block-banded structure, which can be exploited for
efficient cost function and first derivative evalua-
tions. According to Assumption (A), SðpÞ is
composed of blocks, each one of which is block-
Toeplitz, block-Hankel, unstructured, or exact (an
exact block Cl is not modified in the solutionbC:¼Sðp � DpÞ, i.e., bCl

¼ Cl).

Theorem 17 (Structure of the weight matrix G
[93]). Consider the equivalent optimization problem

(STLS0X ). If in addition to the assumptions of

Theorem 16, the structure S is such that (A) holds,
then the weight matrix GðX Þ has the block-Toeplitz

and block-banded structure:

GðX Þ ¼

C0 C>
1 � � � C>

s 0

C1
. .
. . .

. . .
. . .

.

..

. . .
. . .

. . .
. . .

.
C>

s

Cs
. .
. . .

. . .
. . .

. ..
.

. .
. . .

. . .
. . .

.
C>
1

0 Cs � � � C1 C0

266666666666664

377777777777775
,

where s ¼ maxl¼1;...;qðnl � 1Þ and nl is the number of

block columns in the block Cl .

6. Conclusions

We reviewed the development and extensions of
the classical total least-squares problem and pre-
sented a new total least-squares problem formula-
tion. The new formulation is a matrix low rank
approximation problem and allows for different
representations of the rank constraint. Once a
representation is fixed the matrix low rank approx-
imation problem becomes a parameter optimization
problem. The classical total least-squares formula-
tion results from the new one when an input/output
representation is chosen. The input/output repre-
sentation is a linear system of equations AX ¼ B,
which is the classical way of addressing approxima-
tion problems. However, the input/output repre-
sentation is not equivalent to the low rank
constraint, which leads to non-generic total least-
squares problems. Using the representation-free
formulation, we classified existing total least-
squares solution methods. The existing methods
differ in the representation and the optimization
method used.
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The basic and generalized total least-squares
problems have an analytic solution in terms of the
singular value decomposition of the data matrix,
which allows fast and reliable computation of the
solution. Moreover, all globally optimal solutions

can be classified in terms of the singular value
decomposition. In contrast, more general total
least-squares problems like the weighted and
structured total least-squares problems require
numerical optimization methods, which at best find
a single locally optimal solution. The separation
between the global total least-squares problem and
general weighted and structured total least-squares
problems is an important dividing line in the total
least-squares hierarchy.

We emphasized the double minimization struc-
ture of the total least-squares problems and showed
how it can be used for deriving efficient solution
methods. The key step in our approach is the
elimination of the correction by analytically mini-
mizing over it. Then the structure of the data and
weight matrices are exploited for efficient cost
function and first derivative evaluation.
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