
8 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

Contributors

Intel® Technology Journal | Volume 15, Issue 1, 2011

This article describes the basic capabilities of the specifications produced by the
UEFI Forum as well as the history of how these standards evolved.

Introduction
The purpose of this article is to describe the basic capabilities of the UEFI
Forum Specifications including the UEFI Specification version 2.3.1, the
Platform Initialization Specification version 1.2, along with the structure
and use of UDK2010, an open source implementation of the UEFI Forum
Specifications. The history and evolution of these technologies provides some
context for those descriptions.

The Chicken and the Egg
The very first effort that is considered a direct ancestor of UEFI technology had
a very specific tactical goal. In the course of 1997 people at Intel were working
on how to boot computers based on the prospective Itanium® Processor
family. The original plan was to use the conventional BIOS code base for this
job: while more or less everything else about the machines would be new—
processors, chipsets, board designs, operating systems, and so on—it was felt
that keeping stability in one element of the machine recipe a known quantity
would be of some advantage. Without getting to specifics, this plan ultimately
proved infeasible for technical and business reasons. This left the problem of
how to boot an OS on these platforms, with something less than a year of time
for resolution.

This challenge spawned the effort inside Intel that became known as the Intel
Boot Initiative (IBI), specifically targeting development of a boot paradigm
for Itanium Processor based machines. The IBI effort considered a set of
alternatives, “make” versus “buy,” and that included among others adoption of
the IEEE Open Firmware standard, use of the ARC platform standard, and of
course building a solution from scratch. The Open Firmware standard offered
a good technical solution but fell short in terms of business infrastructure for
deployment in the time available while the ARC platform standard ended up
being too prescriptive on platform design. Similarly other “buy” alternatives
offered no clear path to deployment in the time available. Thus the decision
was taken to pursue in-house development of a new mechanism.

A high-level C language interface between platform firmware and the OS
loader seemed like a natural for Itanium Processor machines given the
complexity of low level programming and the desirability of having the OS
know as little about the platform hardware specifics as possible in advance

“A high-level C language interface

between platform firmware and the

OS loader seemed like a natural.”

Mark Doran
Intel Corporation
Vincent J. Zimmer
Intel Corporation
Michael A. Rothman
Intel Corporation

BEyOnD BIOS: ExplOrIng ThE Many DIMEnSIOnS OF ThE UnIFIED
ExTEnSIBlE FIrMwarE InTErFaCE

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 9

of being able to load OS drivers. Having made that leap, it was a short hop
from there to imagine a CPU-architecture–neutral API for firmware and OS
communication for the boot process.

An Abstract Interface to Promote Innovation for OS and Firmware
The value of having such an interface and having it be broadly applicable to
computers in general was driven home by experience on IA-32 platforms:
there, the OS historically had hard-coded assumptions about the presence an
operation of platform hardware devices and intimate familiarity with internals
of many parts of system BIOS. All these factors on IA-32 discouraged change
and made innovation tricky and relatively expensive. Obviously a successor
technology that alleviates the need for the platform and OS to share intimate
details for their respective implementation would provide an opportunity to
decouple the rate of innovation for both the platform and the operating system.

This set of realizations led to the first big scope increase for the fledgling
firmware interface. By taking on board the CPU-ISA–neutral approach, the
scope of the program could increase to cover more of the Intel Processor family.
Even in the late 1990s it was apparent that the conventional BIOS used on
IA-32 computers was starting to become something of a drag on innovation.
The designers of the new firmware interface thus turned their attention to
including the ability to boot IA-32 processors as well as the original mission.
It was around this time in late 1999 that the IBI program produced initial
specifications for the new interface. The change in scope and the deliberate
intention to foster a pro-innovation environment in the pre-OS space informed
choice of the name for the new specification: the Extensible Firmware Interface
(EFI)—neutral to any particular type of computer, deliberately describing only
the interface (and explicitly not implementation of either producer [BIOS] or
consumer [OS]), and calling out the idea that the interface would be a baseline
for future additions.

EFI was adopted for the very first generation of Itanium Processor based
computers and has been the boot interface there ever since. The initial version
of the EFI specification 1.02 was published by Intel in December 2000
covering the operational scope needed to transfer control from platform
firmware to the operating system. From the outset Intel kept the barriers to
adoption for EFI as low as practical with little if any licensing restrictions
and royalty-free sample implementation code. The principle of low barrier to
adoption remains central to the management of the technology right up to
present day.

To that initial publication the EFI Specification 1.10 was added in late 2002.
This updated specification added a firmware driver model that addressed the
problem of using add-in card devices in the boot process and providing code to
operate those without requiring changes to the operating system boot loaders
per device. In essence this provided a path to replace the fragile system of 16-
bit option ROMs first advanced for ISA bus devices and later adopted for PCI
boot devices as well.

“Even in the late 1990s it was

apparent that the conventional BIOS

used on IA-32 computers was starting

to become something of a drag on

innovation.”

“EFI was adopted for the very first

generation of Itanium Processor based

computers and has been the boot

interface there ever since.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

10 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

Industry Backing: Advent of the Unified EFI Forum
Adoption on the IA-32 family would follow gaining momentum slowly but by
early 2005 business conditions and technical constraints made it clear that the
conventional BIOS technology would eventually run out of steam. In recognition
of the fact that becoming a critical piece of the infrastructure for delivering IA-
32 platforms to market is a multilateral industry intercept, a group of industry
stakeholders comprising BIOS vendors, OS vendors, system manufacturers, and
silicon production companies agreed to form the Unified EFI Forum in mid-2005
and the long-term home and governance model for this technology.

Intel contributed the EFI Specification as a starting point for the new Forum’s
work and the founding Promoter members worked in a truly unified fashion
to produce a specification with broad industry support and endorsement. This
initial publication from the Forum, the UEFI Specification 2.0, was published
in January 2006.

In parallel with work on the interface between firmware and operating
system, the Forum agreed to take on work to standardize interfaces for the
internal construction mechanisms within an implementation of the UEFI
Specification. This work led to the publication of the Platform Initialization
(PI) Specification 1.0 in October 2006. This five-volume set aims to make it
possible for silicon component support firmware to work unmodified with
firmware on platforms developed by a variety of system building companies,
simplifying and shortening deployment work for new product generations. The
latest version of the PI Specification is version 1.1 published in February 2008.

The Forum continued to build consensus around updates to the UEFI
Specification, publishing version 2.1 in January 2007. Among other things this
introduced infrastructure that results in more graphical, better localized user
interfaces for the pre-OS space.

Version 2.2 came along in September 2008 introducing IPv6 support for
networking and also improved platform security primitives. Version 2.2’s reign
as the latest/greatest was relatively short-lived, however, largely as a result of
work in the implementation world behind the specification.

Open Source Firmware Implementation
Intel had initially made available open source sample implementations of
the original EFI Specification. That work continued as the EFI Specification
evolved into the UEFI Specification and also delivered an implementation of
the PI Specifications. This implementation found a permanent home as the
EFI Developers Kit open source project still housed at www.TianoCore.org.
This is known as the EDK for historical reasons although today of course the
implementation conforms to the UEFI Forum’s Specifications in its EDK II
(second generation) form.

In addition to implementations of the various specifications, the Forum has
also promoted the creation of test suites both for the UEFI Specification and
for the PI Specification. These tests are designed to help developers build high

“a group of industry stakeholders

comprising BIOS vendors, OS

vendors, system manufacturers, and

silicon production companies agreed to

form the Unified EFI Forum.”

“In addition to implementations of the

various specifications, the Forum has

also promoted the creation of test suites

both for the UEFI Specification and

for the PI Specification.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 11

quality implementations of the specifications and are yet another example of
the philosophy of making UEFI an easy technology to adopt in this case by
making useful tools freely available for developers.

Completing the Specification Picture
As commonly happens with open source projects, interested parties come along
and find new and interesting ways to use the code. In the case of the EDK,
several companies found that the code was useful on ARM based platforms.
Following successful ports to ARM platforms, it was proposed to add an ARM
binding for the UEFI Specification. This was completed by the Forum in May
of 2009 leading to the publication of the 2.3 version of the specification.

The 2.3 version of the Specification represents an interesting milestone for the
community around Intel Architecture firmware. That specification represents
the first point in time where all the interfaces for the boot process are written
down in a formal document with industry-wide agreement on the content.

Looking Forward
The most recent version of the UEFI Specification is now 2.3.1, which as the
name suggests, is an incremental release based on the 2.3 version. The new
areas refine support for scalable platform security solutions and help to support
faster and more sophisticated look and feel for the boot process.

With the state of the specifications now caught up to the present day platform
design needs, attention is turning to driving technology forward to improve
and expand capabilities in the pre-OS space. One of the first such efforts,
radical reduction in boot time, may seem counterintuitive in that frame—the
innovation is in fact to do less not more in the pre-OS space. However, this
clearly represents a step forward in terms of appeal to the market as a whole
and it is equally something that depends in large part on the abstraction of
firmware and OS implementation from each other that is integral to the
UEFI design—each part of the implementation of boot, firmware platform
component initialization, and operating system startup can be optimized to
work best with each other, yielding significant improvements overall.

UEFI technology is already in widespread use, in everything from smart
phones to printers, notebooks, servers, and even supercomputers. There are
new devices and platform technologies in prospect that will benefit from
easier enabling through UEFI shortening time to market. There are new types
of platforms like system-on-chip starting to adopt UEFI technologies for
infrastructure in new product categories. In short, UEFI technology is helping
to power the leading edge of compute platform innovations backed by broad
industry collaboration for deployment and support.

“With the state of the specifications

now caught up to the present day

platform design needs, attention is

turning to driving technology forward

to improve and expand capabilities in

the pre-OS space.”

“UEFI technology is already in

widespread use, in everything from

smart phones to printers, notebooks,

servers, and even supercomputers.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

12 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

Where Does This Fit in the Ecosystem?
When we discuss UEFI, we need to emphasize that UEFI is a pure interface
specification that does not dictate how the platform firmware is built; the
“how” is relegated to PI. The consumers of UEFI include but are not limited
to operating system loaders, installers, adapter ROMs from boot devices, pre-
OS diagnostics, utilities, and OS runtimes (for the small set of UEFI runtime
services). In general, though, UEFI is about booting, or passing control to a
successive layer of control, namely an operating system loader, as shown in
Figure 1. UEFI offers many interesting capabilities and can exist as a limited
runtime for some application set, in lieu of loading a full, shrink-wrapped
multi-address space operating system like Microsoft Windows*, Apple OS X*,
HP-UX*, or Linux, but that is not the primary design goal.

“UEFI is a pure interface specification

that does not dictate how the platform

firmware is built; the “how” is

relegated to PI.”

UEFI & OS Loader
handshake

Run Time
(RT)

EFI/UEFI
Interfaces

OS-Absent
App

Transient OS
Environment

Transient OS
Boot Loader

Device,
Bus, or
Service
Driver

Boot
Manager

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

Components covered by EFI & UEFI

Not
Covered
By EFI or

UEFI

Security
(SEC)

Pre EFI
Initialization

(PEI)

Boot Dev
Select
(BDS)

verify

CPU
Init

PEI
Core

Pre
Verifier

Chipset
Init

EFI Driver
Dispatcher

Architectural
Protocols

Board
Init

Not
Covered
By EFI or

UEFI

 [. . Platform initialization . .] ShutdownPower on [. . . . OS boot]

Driver
Execuation

Environment
(DXE)

Figure 1: where EFI and UEFI Fit into the platform Boot Flow
(Source: Intel Corporation, 2010)

PI, on the other hand, should be largely opaque to the pre-OS boot devices,
operating systems, and their loaders since it covers many software aspects
of platform construction that are irrelevant to those consumers. PI instead
describes the phases of control from the platform reset and into the success
phase of operation, including an environment compatible with UEFI, as
shown in Figure 2. In fact, the PI DXE component is the preferred UEFI core
implementation.

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 13

Within the evolution of Framework to PI, some things were omitted from
inclusion in the PI specifications. Specifically, the CSM specification abstracted
booting on a PC/AT system. This requires an x86 processor, PC/AT hardware
complex (for example, 8254, 8259, RTC). The CSM also inherited other
conventional BIOS boot limitations, such as the 2.2-TB disk limit of Master
Boot Record (MBR) partition tables. For a world of PI and UEFI, you get all
of the x86 capabilities (IA-32 and x64, respectively), ARM*, Itanium®, and
future CPU bindings. Also, via the polled driver model design, UEFI APIs,
and the PI DXE architectural protocols, the platform and component hardware
details are abstracted from all consumer software. Other minor omissions
also include data hub support. The latter has been replaced by purpose-built
infrastructure to fill the role of data hub in Framework-based implementations,
such as SMBIOS table creation and agents to log report status code actions.

What has happened in PI beyond Framework, though, includes the addition
of a multiprocessor protocol, Itanium E-SAL and MCA support, the above-
listed report-status code listener and SMBIOS protocol, an ACPI editing
protocol, and an SIO protocol. With Framework collateral that moved
to PI, a significant update was made to the System Management Mode
(SMM) protocol and infrastructure to abstract out various CPU and chipset
implementations from the more generic components. On the DXE front,

Figure 2: where pI and Framework Fit into the platform Boot Flow
(Source: Intel Corporation, 2010)

Security
(SEC)

Pre EFI
Initialization

(PEI)

Driver
Execution

Environment
(DXE)

Boot Dev
Select
(BDS)

EFI/UEFI
Interfaces

verify

CPU
Init

PEI
Core

Pre
Verifier

Chipset
Init

Board
Init

EFI Driver
Dispatcher

Architectural
Protocols

UEFI & OS Loader
handshake

Run Time
(RT)

Not
Covered

By PI or Framework

Transient OS
Boot Loader

Final OS
Boot Loader

Final OS
Environment

OS-Present
AppNot

Covered
By PI or Framework

Transient OS
Environment

OS-Absent
AppNot

Covered
By PI or FrameworkDevice,

Bus, or
Service
Driver

Components covered by Framework & PI

Boot
Manager

 [. . Platform initialization . .] ShutdownPower on [. . . . OS boot]

Intel® Technology Journal | Volume 15, Issue 1, 2011

14 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

small cleanup was added in consideration of UEFI 2.3 incompatibility. Some
additions occurred in the PEI foundation for the latest evolution in buses,
such as PCI Express*. In all of these cases, the revisions of the SMM, PEI, and
DXE service tables were adjusted to ease migration of any SMM drivers, DXE
drivers, and PEI module (PEIM) sources to PI. In the case of the firmware file
system and volumes, the headers were expanded to comprehend larger file and
alternate file system encodings, respectively. Unlike the case for SMM drivers,
PEIMs, and DXE drivers, these present a new binary encoding that isn’t
compatible with a pure Framework implementation.

The notable aspect of the PI is the participation of the various members of
the UEFI Forum, which will be described below. These participants represent
the consumers and producers of PI technology. The ultimate consumer of a
PI component is the vendor shipping a system board, including multinational
companies such as Apple, Dell, HP, IBM, Lenovo, and many others. The
producers of PI components include generic infrastructure producers such
as the independent BIOS vendors (IBVs) like AMI, Insyde, Phoenix, and
others. And finally, the vendors producing chipsets, CPUs, and other hardware
devices like AMD, ARM, and Intel would produce drivers for their respective
hardware. The IBVs and the OEMs would use the silicon drivers, for example.
If it were not for this business-to-business transaction, the discoverable binary
interfaces and separate executable modules (such as PEIMs and DXE drivers)
would not be of interest. This is especially true since publishing GUID-based
APIs, marshalling interfaces, discovering and dispatching code, and so on take
some overhead in system board ROM storage and boot time. Given that there’s
never enough ROM space, and also in light of the customer requirements
for boot time such as the need to be “instantly on,” this overhead must be
balanced by the business value of PI module enabling. If only one vendor had
access to all of the source and intellectual property to construct a platform, a
statically bound implementation would be more efficient, for example. But in
the twenty-first century with the various hardware and software participants
in the computing industry, software technology such as PI is key to getting
business done in light of the ever-shrinking resource and time-to-market
constraints facing all of the UEFI forum members.

There is a large body of Framework-based source-code implementations, such
as those derived or dependent upon EDK I (EFI Developer Kit version 1),
which can be found on www.tianocore.org. These software artifacts can be
recompiled into a UEFI 2.3, PI 1.2-compliant core, such as UDK2010 (the
UEFI Developer Kit revision 2010), via the EDK Compatibility Package
(ECP). For new development, though, the recommendation is to build native
PI 1.2, UEFI 2.3 modules in the UDK2010 since these are the specifications
against which long-term silicon enabling and operating system support will
occur, respectively.

“Some additions occurred in the PEI

foundation for the latest evolution in

buses, such as PCI Express*.”

“Given that there’s never enough

ROM space, and also in light of the

customer requirements for boot time

such as the need to be “instantly on,”

this overhead must be balanced by the

business value of PI module enabling.”

“There is a large body of Framework-

based source-code implementations,

such as those derived or dependent

upon EDK I (EFI Developer Kit

version 1), which can be found on

www.tianocore.org.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 15

Terminology
The following list provides a quick overview of some of the terms that have
existed in the industry associated with the BIOS standardization efforts.

 • UEFI Forum. The industry body which produces UEFI, Platform
Initialization (PI), and other specifications.

 • UEFI Specification. The firmware-OS interface specification.

 • EDK. The EFI Development Kit, an open sourced project that provides a
basic implementation of UEFI, Framework, and other industry standards.
It, is not however, a complete BIOS solution. An example of this can be
found at www.tianocore.org.

 • UDK. The UEFI Development Kit is the second generation of the EDK
(EDK II), which has added a variety of codebase-related capabilities and
enhancements. The inaugural UDK is UDK2010, with the number
designating the instance of the release.

 • Framework. A deprecated term for a set of specifications that define
interfaces and how various platform components work together. What this
term referred to is now effectively replaced by the PI specifications.

 • Tiano. An obsolete codename for an Intel codebase that implemented the
Framework specifications.

Managing the Specifications in UEFI
Regarding the UEFI Forum, there are various aspects to how it manages both
the UEFI and PI specifications. Specifically, the UEFI forum is responsible for
creating the UEFI and PI specifications.

When the UEFI Forum first formed, a variety of factors and steps were part of
the creation process of the first specification:

 • The UEFI forum stakeholders agree on EFI direction

 • Industry commitment drives need for broader governance on specification

 • Intel and Microsoft contribute seed material for updated specification

 • EFI 1.10 components provide starting drafts

 • Intel agrees to contribute EFI test suite

As this had established the framework of the specification material that was
produced and that the industry used, the forum itself was formed.

The UEFI Forum was established as a Washington nonprofit corporation. It
develops, promotes, and manages evolution of Unified EFI Specification and
continues to drive low barrier for adoption.

The UEFI Forum has a form of tiered membership: Promoters, Contributors,
and Adopters. More information on the membership tiers can be found at
www.uefi.org. The Promoter members for the UEFI forum are AMD, AMI,
Apple, Dell, HP, IBM, Insyde, Intel, Lenovo, Microsoft, and Phoenix.

“the UEFI forum is responsible

for creating the UEFI and PI

specifications.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

16 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

The UEFI Forum has several work groups. Figure 3 illustrates the basic
makeup of the forum and the corresponding roles.

“The UEFI Forum has several work

groups.”

Sub-teams are created in the main owning workgroup when a topic of
sufficient depth requires a lot of discussion with interested parties or experts in
a particular domain. These teams are collaborations amongst many companies
who are responsible for addressing the topic in question and bringing back
to the workgroup either a response or material for purposes of inclusion in
the main working specification. Some examples of sub-teams that have been
created are as follows as of this writing:

 • UCST – UEFI Configuration Sub-team. Chaired by Michael Rothman
(Intel), this sub-team is responsible for all configuration related
material and the team has been responsible for the creation of the UEFI
configuration infrastructure commonly known as HII, which is in the
UEFI Specification.

 • UNST – UEFI Networking Sub-team. Chaired by Vincent Zimmer (Intel),
this sub-team is responsible for all network related material and the team has
been responsible for the update/inclusion of the network related material in
the UEFI specification, most notably the IPv6 network infrastructure.

 • USST – UEFI Security Sub-team. Chaired by Tim Lewis (Phoenix),
this sub-team is responsible for all security related material and the team
has been responsible for the added security infrastructure in the UEFI
specification.

PIWG and USWG
The Platform Initialization Working Group (PIWG) is the portion of the
UEFI forum that defines the various specifications in the PI corpus. The UEFI
Specification Working Group (USWG) is the group that evolves the main
UEFI specification. Figure 4 illustrates the layers of the platform and shows the
scope for the USWG and PIWG, respectively.

“The Platform Initialization Working

Group (PIWG) is the portion of the

UEFI forum that defines the various

specifications in the PI corpus.”

Figure 3: Forum group hierarchy
(Source: Intel Corporation, 2011)

Publications/
Decisions

ratified by the board

Each work group
approves/delivers
different content

to the public.

Each sub-team focuses on
specific topics and

contributes material to
the work group.

UEFI Board

UCST

UNST

USST

PIWG

USWG

UTWG

ICWG

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 17

Figure 4: pI/UEFI layering
(Source: Intel Corporation, 2011)

OS
Pre-boot

Tools
• UEFI Spec is about interfaces between OS, add-in driver
 and system firmware
 – Operating systems and other high-level software should
 only interact with interfaces and services defined by the
 UEFI Specification

• PIWG Specs relate to making UEFI implementations
 – Promote interoperability between firmware components
 providers
 – All interfaces and services produced and consumed by
 firmware only

UEFI Specification

USWG

Platform Drivers

Silicon Component
Modules

Hardware

P
IW

G
 S

co
p

e
“H

”

Framework

Modular components

Scope

Figure 5: where pI and Framework Fit into the platform Boot Flow
(Source: Intel Corporation, 2011)

Security
(SEC)

Pre EFI
Initialization

(PEI)

Driver
Execution

Environment
(DXE)

Boot Dev
Select
(BDS)

UEFI & OS Loader
handshake

Run Time
(RT)

UEFI
Interfaces

verify

OS-Absent
App

Transient OS
Environment

Transient OS
Boot Loader

Device,
Bus, or
Service
Driver

CPU
Init

PEI
Core

Pre
Verifier

Chipset
Init

Board
Init

Boot
Manager

EFI Driver
Dispatcher

Architectural
Protocols

Final OS
Boot Loader

Final OS
Environment

OS-Present
App

Components now covered by UEFI & PI

 [. . Platform initialization . .] ShutdownPower on [. . . . OS boot]

Figure 5 shows how the PI elements evolve into UEFI. The left half of the
diagram with SEC, PEI, and DXE are described by the PI specifications.
BDS, UEFI+OS Loader handshake, and RT are the province of the UEFI
specification.

Intel® Technology Journal | Volume 15, Issue 1, 2011

18 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

In addition, as time has elapsed, the specifications have evolved. Figure 6 is a
timeline for the specifications and the implementations associated with them.

Figure 6: Specification and Codebase Timeline
(Source: Intel Corporation, 2011)

http://uefi.org

UEFI 2.1 UEFI 2.2 UEFI 2.3UEFI 2.0

PI 1.0 PI 1.1

Shell 2.0

SCT UEFI
2.0

2006 2007 2008 2009 2010

SCT UEFI
2.1

SCT
PI 1.0

EDK 1.01:
UEFI 2.0

EDK 1.04:
UEFI 2.1

PI 1.0

EDK 1.05:
UEFI 2.1+

PI 1.0

EDK II:
UEFI 2.1+

PI 1.0Open Source

EDK II:
UEFI 2.3+

PI 1.2+

PI 1.2

Packaging 1.0

New

S
p

ec
if

ic
at

io
n

s
Im

p
le

m
en

ta
ti

o
n

Platform Trust/Security
Recall that PI allowed for business-to-business engagements between
component providers and system builders. UEFI, on the other hand, has a
broader set of participants. These include the operating system vendors that
built the OS installers and UEFI-based runtimes; BIOS vendors who provide
UEFI implementations; platform manufacturers, such as multinational
corporations who ship UEFI-compliant boards; independent software vendors
who create UEFI applications and diagnostics; independent hardware vendors
who create drivers for their adapter cards; and platform owners, whether a
home PC user or corporate IT, who must administer the UEFI-based system.

PI differs from UEFI in the sense that the PI components are delivered under
the authority of the platform manufacturer and are not typically extensible by
third parties. UEFI, on the other hand, has a mutable file system partition,
boot variables, a driver load list, support of discoverable option ROMs in
host-bus adapters (HBAs), and so on. As such, PI and UEFI present different
issues with respect to security. Chapter 10 treats this topic in more detail,
but in general, the security dimension of the respective domains include the
following: PI must ensure that the PI elements are only updateable by the
platform manufacturer, recovery, and that PI is a secure implementation
of UEFI features, including security; UEFI provides infrastructure
to authenticate the user, validate the source and integrity of UEFI
executables, network authentication and transport security, audit (including
 hardware-based measured boot), and administrative controls across UEFI
policy objects, including write-protected UEFI variables.

“PI differs from UEFI in the sense

that the PI components are delivered

under the authority of the platform

manufacturer and are not typically

extensible by third parties.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 19

A fusion of these security elements in a PI implementation is shown in
Figure 7.

Figure 7: Trusted UEFI/PI stack
(Source: Intel Corporation, 2011)

PhysPresence, SHA1

UEFI-OS

BDS

DXE

PEI

SEC
S-CRTM

CPU

HARDWARE

SB

SIO

TPM

NB

L
P
C

F
V

M
ai

n
F

V
R

ec
o

ve
ry

UEFI Secure Boot

UEFI TCG Measurement

Secure Firmware Update

PhysPresence, SHA1

Signed update/content

SEC, PI Foundation

M
E
M
O
R
Y

Measure FV Main

Mbr &
Option ROMs

Measurement
Log in ACPI

Memory

Signed Loader

Legacy-OS

UEFI-OS Ldr
And Drivers

Embedded Systems: The New Challenge
As UEFI took off and became pervasive, a new challenge has been taking
shape in the form of the PC platform evolution to take on the embedded
devices, more specifically the consumer electronic devices, which have a
completely different set of requirements driven by user experience factors like
instant power-on for various embedded operating systems. Many of these
operating systems required customized firmware with OS-specific firmware
interfaces and did not fit well into the PC firmware ecosystem model.

The challenge now is to make the embedded platform firmware have similar
capabilities to the traditional model such as being OS-agnostic, being scalable
across different platform hardware, and being able to lessen the development
time to port and to leverage the UEFI standards.

How the Boot Process Differs between a Normal Boot and
an Optimized/Embedded Boot
Figure 8 illustrates that, from the point of view of UEFI architecture, there are no
design differences between the normal boot and an optimized boot. Optimizing
a platform’s performance does not mean that one has to violate any of the design
specifications. It should also be noted that to comply with UEFI, one does not

“The challenge now is to make the

embedded platform firmware have

similar capabilities to the traditional

model such as being OS-agnostic,

being scalable across different platform

hardware, and being able to lessen

the development time to port and to

leverage the UEFI standards.”

Intel® Technology Journal | Volume 15, Issue 1, 2011

20 | Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface

need to encompass all of the standard PC architecture, but instead the design
can limit itself to the components that are necessary for the initialization of
the platform itself. Chapter 2 in the UEFI 2.3 Specification does enumerate the
various components and conditions that comprise UEFI compliance.

Figure 8: architectural Boot Flow Comparison
(Source: Intel Corporation, 2011)

O/S Resume Vector

Yes

No

SEC Phase
Pre-memory early

initialization, microcode
patching, and MTRR

programming.

PEI Phase
Dispatches various

PEI drivers. Pre-memory
early initialization,

microcode patching,
and MTRR programming.

Are we in an
S3 Boot mode?

DXE + BDS Phase
Discover all drivers

available to the
platform. Dispatch

all drivers encountered.

Normal Boot Optimized Boot

O/S Resume Vector

Yes

No

SEC Phase
Pre-memory early

initialization, microcode
patching, and MTRR

programming.

PEI Phase
Dispatches only minimal
PEI drivers. Pre-memory

early initialization,
microcode patching,

and MTRR programming.

Are we in an
S3 Boot mode?

DXE + BDS Phase
Discover the drivers

available to the platform.
Dispatch only the minimal

drivers required to boot
the target.

Summary
We have provided some background about the history that led to the creation
of the BIOS standards that are developed today. In addition, we have hopefully
provided some insight on how the UEFI forum operates and opened the
door for people to understand how UEFI applies within their platform.
Finally, we have given some pointers to the open source aspect of UEFI such
that people can follow the evolution of the codebase technology to help
realize implementations of this technology. As you read the other articles in
this journal, you should see a very clear indication of some of the usage and
capabilities exhibited by various members of the industry.

So fasten your seatbelt and dive into a journey through industry standard
firmware.

Intel® Technology Journal | Volume 15, Issue 1, 2011

Beyond BIOS: Exploring the Many Dimensions of the Unified Extensible Firmware Interface | 21

Authors’ Biographies
Mark Doran is a Senior Principal Engineer with Intel Corporation. He
is Intel’s lead architect for UEFI work. His prior work includes OS kernel
development and IEEE POSIX standards content development. His first
venture into standards for the firmware space was the Intel Multiprocessor
Specification, the first recipe for building Intel Architecture symmetric
multiprocessor computers that run shrink-wrap operating system binaries.
Mark is originally from the UK and received a BSc in Computer Science with
Electronic Engineering from University College, University of London.

Vincent J. Zimmer is a Principal Engineer in the Software and Services Group
at Intel Corporation and has over 18 years experience in embedded software
development and design, including BIOS, firmware, and RAID development.
Vincent received an Intel Achievement Award and holds over 200 patents.
He has a Bachelor of Science in Electrical Engineering degree from Cornell
University, Ithaca, New York, and a Master of Science in Computer Science
degree from the University of Washington, Seattle.

Can be contacted at http://www.twitter.com/VincentZimmer and
vincent.zimmer@gmail.com

Michael A. Rothman is a Senior Staff Engineer in the Software and Services
Group at Intel and has more than 20 years of operating system and embedded
software development experience. Michael holds over 200 patents and was
awarded an Intel Achievement Award for some of his systems work. He started his
career with kernel and file system development in OS/2 and DOS and eventually
migrating to embedded operating systems work and firmware development.

Can be contacted at http://www.twitter.com/MichaelARothman and
michael.a.rothman@gmail.com

