Українська   Русский
DonNTU   Masters' portal

Abstract on the topic of graduation work

Attention! This abstract refers to a work in progress. Estimated completion date: June 2021 Contact the author after the specified date for the final version.

Содержание

Introduction

Efficient use of energy is one of the most important problems of the national economy. Its solution will reduce the consumption of energy and material resources while production of industrial and agricultural products, reduce the large unproductive expenditures of the state and the population in the field of housing and communal services, improve situation in the country. An important role in solving this problem is played by the electric drive, which is the main consumer of electrical energy.

Energy saving has long been relevant due to the difficulty of accumulating large amounts of electricity and the general trend of rising energy prices.

Economy of positional electric drives depends on the correct choice of all its devices and is closely related to the problem of determining the optimal laws of motion of the actuator body of the working machine from the initial position to the final position and the formation of optimal laws for changing the speed of the electric drive, which provide a minimum of dynamic loads and energy loss.

In the intermittent mode of operation of positional electric drives, even a slight increase in the movement processing time can significantly reduce the amount of heat loss. A lot of publications are devoted to the rational choice of the desired laws for changing the coordinates of positional electric drives, as well as the development of algorithms for the formation of the corresponding control actions. When comparing various control laws for positional mechanisms, most often only the magnitude of heat losses at zero static moment Ms is analyzed on the motor shaft.

Along with heat losses, it is also necessary to calculate and analyze the amount of mechanical power expended to perform useful work. By summing up both of these indicators, it is possible to estimate the amount of energy consumption of the system and choose, if technological conditions allow, the time for working out a given movement from the condition of a minimum of consumed electricity.

The process of heating various parts of a variable speed drive is part of the energy loss during its operation. Ensuring the cooling of the drive and reducing the temperature of its heating are important component of its work, increasing its energy efficiency.

Improving the quality of technological equipment of manufacturing industries and, as a result, of manufactured products is impossible without the massive use of automated systems based on adjustable position drives. Positional control is widely used in robotics, in boring and drilling machines, in platform stabilization systems in manipulators, valves, gate valves, antenna pointing systems, optical and radio telescopes, as well as in various electric drive systems of industrial installations.

1. Theme urgency

There are a number of methods for synthesizing optimal control:

  • Methods of the calculus of variations,
  • Pontryagin's maximum principle,
  • Relay control and dynamic programming Hamilton-Jacobi-Bellman.
  • Modern adaptive synthesis methods are based on control algorithms with fuzzy logic and neural networks

    Master's work is devoted to the actual scientific problem of developing a positional electric drive system that is optimal in terms of energy consumption. The criterion for such optimization is, first of all, the minimum electrical losses in the armature winding, which is achieved by reducing the heating of the winding.

    2. Goal and tasks of the research

  • Development of a three-loop system for controlling the position of an electric drive, aimed at choosing such characteristics and parameters that will provide minimum losses in the stator winding of a DC motor.
  • Main objectives of the study:

    1. Development and simulation of a three-loop control system for the position of an electric drive in the Simulink simulation environment
    2. Analysis of optimal control synthesis methods for a given system
    3. Comparative analysis of triangular, parabolic and trapezoidal tachograms

    Object of study:

  • Slaved DC motor position control system.
  • Subject of study:

  • Development of a positioning electric drive system based on the condition of minimizing energy consumption, taking into account losses from static load
  • 3. Overview of research and development

    Since position control systems are an important part of various electric drive systems in industrial plants, then the problems of their synthesis, analysis, minimization of energy consumption and implementation have been widely studied by both American and European scientists and domestic specialists.

    Conclusions

    Optimal power consumption synthesis of electric drive position control systems is not only of theoretical and research interest, but also of practical interest. The development of optimal position control systems makes it possible to carry out effective coordinated positioning of actuators for several electric drives, and also expands the possibilities when coordinating the positioning process of the actuator with other technological operations, when an increase in the duration of the operation positioning does not affect the total duration of the technological cycle.

    The master's work is devoted to the actual scientific problem of developing a positional electric drive system that will optimize power consumption and take into account static load losses.

    As part of the research carried out:

    1. The structure of the electric drive position control system has been developed and the functions of its components have been determined.
    2. Based on the analysis of literary sources, the main methods that can be used in the proposed approach to optimizing the system in terms of energy consumption are highlighted.
    3. A number of experiments were carried out on the use of various methods in optimizing the system in terms of energy consumption, taking into account the static load, and the results obtained were analyzed.
    4. The possibilities of complex automation of the developed approach to the synthesis and optimization of the system, the requirements for software and hardware are estimated, the search for functionally similar systems for the synthesis of optimal systems is carried out.

    When writing this essay, the master's work has not yet been completed. Final Completion: June 2023. Full text of the work and materials on the topic can be obtained from the author or his supervisor after the specified date.

    References

    1. Сапсалёв А.В., Огнянников Е.В., Давыденко О.Б. Оптимальные взаимосвязи параметров циклических электроприводов с линейной диаграммой скорости // Электроприводы переменного тока: Труды международной четырнадцатой научно-технической конференции. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2007, с 319- 322.
    2. Тукалов И.О, Асмолова Л.В. Сравнительный анализ энергетических затрат при различных законах изменения скорости привода летучих ножниц // Проблемы автоматизированного электропривода. Теория и практика: Вестник ХГПУ. – Харьков: ХГПУ, – 2001. – №10 – с. 360-362.
    3. Чермалых А.В., Данилин А.В., Прядко С.П. Сравнительный анализ диаграмм управляющих воздействий электропривода, формируемых задающими моделями // Вісник Кременчуцького державного політехнічного університету. – Кременчук: КДПУ. – 2002. – №1 (12). –с. 13-17.
    4. Денисова А.В., Сабинин Ю.А. Формирование задающего воздействия в позиционном электроприводе. //Электротехника №9 2002, с. 21-28.
    5. Седов Ю.Г., Теличко Л.Я. Исследование параболического закона управления в позиционном электроприводе //Известия вузов: Электромеханика №4, 2004. с. 25-27.
    6. Теличко Л.Я., Седов Ю.Г. Исследование косинусоидального и параболического законов позиционирования // Известия вузов: Электромеханика №3, 2005. с. 51-53.
    7. Расчет энергопотребления позиционного электропривода, реализующего оптимальное по тепловым потерям управление [Электронный ресурс]/Толочко О.И., Розкаряка П.И - Электрон.текст - Режим доступа: http://etf.donntu.ru/eapu/scientific/6_consumption_estimation.pdf
    8. Зеленов А.Б., Полилов Е.В., Яблонь В.П., Морозов Д.И. Энергосбережение и оптимизация потерь в позиционных электроприводах (часть 2) // Вестник КГПУ им. М. Остроградского. – Кременчуг: КГПУ. – Вып. 3/2007 (44), Ч2. – С. 82-87.
    9. Петров Ю. П. Оптимальное управление электроприводом. М. – Л., Госэнергоиздат, 1961. – 187 с
    10. Bychkov, Mikhail; Kuznetsova, Valentina; Anuchin, Aleksey (2020). - Quasi-optimum Control of Positional Electric Drive with Synchronous Reluctance Motor by Criterion of Minimum Electrical Losses, DOI:10.1109/IWED48848.2020.9069564
    11. Шишков А.Н., Виноградов К.М., Бычков А.Е., Белоусов Е.В., Сычев Д.А., Наумович Н.И., Хаятов Е.С. Оптимальная траектория движения позиционного электропривода//Вестник ЮУрГУ. Серия «Энергетика» - 2015. – Т.15, №3. – С.82-89. DOI: 10.14529/power150311
    12. Яковленко П.Г. Оптимизация законов управления позиционными электроприводами для управления от ЭВМ//Системы электропривода и промышленной автоматики с управлением от микропроцессоров и ЭВМ. – Л.: ЛДНТП, Ленингр.отд-ние, 1983. – 32-35
    13. Моисеев Н.Н. Численные методы в теории оптимальных систем. М.: Наука, 1971,424 стр.
    14. Л.С. Понтрягин, В.Г.Болтянский, Р.В.Гамкрелидзе, Е.Ф. Мищенко/ Математическая теория оптимальных процессов. М.: Наука
    15. Беллман Р.Е. Динамическое программирование. М.:Изд-во иностр. лит-ры, 1960
    16. Александров А.Г. Оптимальные и адаптивные системы. М.:Высш. шк., 1989, 263 с.
    17. Юревич Е.И. Теория автоматического управления. СПб.: БХВ Петербург, 2007, 560 с.
    18. Тэрано Т., Асаи К., Сугэно М. Прикладные нечёткие системы. М.: Мир