УДК 502:624.131

А.Ю. Виноградов канд. техн. наук, ведущий науч. сотрудник, ООО НПО «Гидротехпроект»

ОБ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ СТРОЯЩИХСЯ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ

Аннотация. В статье проводится анализ основных факторов экологической опасности, обусловленной функционированием тепловых электростанций. Даются рекомендации по устранению этих факторов в процессе предпроектных и проектных работ. Отмечается необходимость получения адекватной системы исходных данных для обеспечения экологической безопасности строящихся тепловых электростанций.

Ключевые слова: тепловая электростанция, экология, окружающая среда, инженерно-экологические изыскания.

A.Yu. Vinogradov, Gidrotehproekt Research & Development Association ABOUT THE CONSTRUCTION OF ECOLOGICAL SAFETY OF THERMAL POWER PLANTS

Abstract. The paper analyzes the factors of main environmental hazards caused by the operation of thermal power plants. The recommendations for elimination of these factors in the process of pre-project and project activities are given. It is noted the need for an adequate system of the input data to ensure the environmental safety for constructed thermal power plants.

Keywords: thermal power plant, ecology, environment, engineering and environmental survey.

Тепловая электроэнергетика является основой энергосистемы России, на объектах которой вырабатывается около 70% электрической мощности в масштабе страны. Тепловые электростанции (ТЭС), и особенно углесжигающие, являются экологически опасными промышленными объектами на всех этапах их жизненного цикла (строительства, эксплуатации, реконструкции, вывода из эксплуатации). В связи с этим обстоятельством вопросы обеспечения экологической безопасности и защиты окружающей среды приобретают серьезную актуальность [8; 11; 12]. Обеспечение экологической безопасности ТЭС предусматривает достижение результатов природоохранной деятельности на ТЭС нормативным требованиям состояния окружающей среды путем разработки комплекса мер организационного и технического характера.

Экологическая опасность ТЭС определяется, с одной стороны, техническими характеристиками ТЭС (их проектной мощностью, объемами используемых ресурсов, топлива и пр.), а с другой – особенностями природных и техногенных условий территории их размещения [2; 12]. Поэтому обоснование мероприятий, обеспечивающих экологическую безопасность ТЭС, которые планируется построить, предусматривается как на предпроектных, так и на проектных стадиях строительства. Кроме того, ряд специальных мероприятий по обеспечению экологической безопасности ТЭС разрабатываются после строительства ТЭС при подготовке их к эксплуатации.

Такое обоснование основывается на исходных данных о состоянии природнотехногенной среды в районах предполагаемого размещения ТЭС. Источником адекватной системы исходных данных являются результаты инженерных изысканий (инженерногеодезических, инженерно-геодогических, инженерно-гидрометеорологических, инженерноэкологических) [6; 8]. Наибольшую ценность для обеспечения экологической безопасности строящихся ТЭС представляют инженерно-экологические изыскания. При необходимости дополнительно выполняются инженерно-геотехнические изыскания, изыскания грунтовых строительных материалов, изыскания источников водоснабжения на базе подземных вод и др.

Основным документом, разрабатываемым на предпроектных стадиях строительства ТЭС, являются материалы по оценке воздействия ТЭС на окружающую среду (ОВОС) [8]. В материалах ОВОС предлагаются предварительные природоохранные мероприятия и инженерные решения по защите окружающей среды. Согласно Федеральному закону «Об экологической

№ 2 (54) – 2016 37

экспертизе» от 23 ноября 1995 г. № 174-ФЗ, материалы ОВОС разрабатываются в обязательном порядке. На предпоектных стадиях также проводится выбор оптимального варианта размещения ТЭС. Такая задача по оптимизации размещения тепловых и атомных электростанций была сформулирована ранее в работах [3–5].

На стадии разработки проекта основным проектным документом, касающимся охраны окружающей среды, является перечень мероприятий по охране окружающей среды (ПМ ООС) [8]. Разработка этого документа устанавливается требованиями Постановления Правительства РФ от 16 февраля 2008 г. № 87 «О составе разделов проектной документации и требования к их содержанию». В ПМ ООС для основных разделов проекта обосновываются окончательные организационные природоохранные мероприятия и проектные решения по инженерной защите окружающей среды от негативных природных и техногенных факторов.

Среди техногенных факторов в ПМ ООС учитываются факторы влияния различных промышленных объектов, коммуникаций и населенных пунктов вблизи площадки размещения проектируемой ТЭС, среди природных факторов – совокупность опасных и особо опасных (геологических [9; 10], гидрологических [1; 8], метеорологических [7] и прочих) процессов и явлений. Некоторые из этих процессов и явлений ответственны также за технологическую опасность и опосредованное влияние на уровень экологической безопасности в результате возможных аварий. Наконец, указанные опасные и особо опасные природные процессы и явления во многом определяют энергетическую безопасность, то есть условия, при которых потребитель электроэнергии имеет надежный доступ к ней, а производитель – к потребителям.

ПМ ООС состоит из следующих основных глав:

- Охрана атмосферного воздуха,
- Охрана и рациональное использование водных ресурсов,
- Охрана земельных ресурсов,
- Охрана недр,
- Отходы производства,
- Охрана растительного и животного мира,
- Защита от шума и других физических факторов,
- Социальная среда и последствия намечаемой деятельности.

После разработки и утверждения проектной документации перед пуском в эксплуатацию новой или реконструированной ТЭС разрабатываются следующие природоохранные документы:

- Проект предельно допустимых выбросов (ПДВ),
- Проект предельно допустимых сбросов (ПДС),
- Проект нормативов образования отходов и лимитов на их размещение (ПНООЛР),
- Проект обоснования санитарно-защитной зоны (СЗЗ),
- Паспорта опасных отходов.

Эти документы согласовываются с Федеральной службой по надзору в сфере природопользования и в зависимости от своего назначения – с Федеральным агентством водных ресурсов, Федеральным агентством по рыболовству, Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека и другими заинтересованными ведомствами.

Необходимо добавить, что для обеспечения экологической безопасности ТЭС на стадиях их строительства, эксплуатации, реконструкции и вывода из эксплуатации необходима организация и функционирование системы экологического мониторинга (мониторинга окружающей среды). Экологический мониторинг представляет собой систему комплексных наблюдений за состоянием окружающей среды (в том числе компонентов природной среды, естественных экологических систем, природно-техногенной среды) за происходящими в них процессами и явлениями, а также оценку и прогноз изменений состояния окружающей среды.

Мониторинг состояния окружающей среды позволяет выявлять тенденции изменения ее

38 № 2 (54) – 2016

состояния в пространстве и во времени.

Заключение

- 1. Выполнен анализ основных факторов экологической опасности, обусловленной функционированием ТЭС.
- 2. Сформулированы рекомендации по устранению этих факторов в процессе предпроектных и проектных работ.
- 3. Отмечается необходимость получения адекватной системы исходных данных для обеспечения экологической безопасности строящихся ТЭС.

Список литературы:

- 1. Брюхань Ф.Ф. Науки о земле: учебное пособие для студентов, обучающихся по направлению 270100 «Строительство» / Ф.Ф. Брюхань. Москва, 2011. 192 с.
- 2. Брюхань Ф.Ф. Оценка экологичности проекта строительства мобильной пиковой газотурбинной электростанции в Республике Тыва // Вестник МГСУ. 2010. № 2. С. 115–119.
- 3. Брюхань Ф.Ф., Графкина М.В. Оптимизация размещения тепловых и атомных станций по геоэкологическим критериям // Естественные и технические науки. 2008. № 2 (34). С. 286–289.
- 4. Брюхань Ф.Ф., Графкина М.В., Потапов А.Д. Выбор оптимального варианта размещения атомных станций по геоэкологическим критериям // Вестник МГСУ. 2008. № 3. С. 86–96.
- 5. Брюхань Ф.Ф., Иванов В.Н. Концептуальная схема аэрометеорологических исследований при выборе пункта и площадки атомных станций // Труды Института экспериментальной метеорологии. 1992. № 55. С. 3–12.
- 6. Брюхань Ф.Ф., Коськин И.О. Предпроектное геоэкологическое обоснование выбора площадок размещения мобильных газотурбинных электростанций на рекреационных территориях // Вестник МГСУ. 2012. № 5. С. 143–149.
- 7. Брюхань Ф.Ф., Ляхов М.Е., Погребняк В.Н. Смерчеопасные зоны в СССР и размещение атомных станций // Известия Академии наук СССР. Серия географическая и геофизическая. 1989. № 1. С. 40–48.
- 8. Инженерно-экологические изыскания для строительства тепловых электростанций. М.: Из-во ACB, 2010. 192 с.
- 9. Лаврусевич А.А. Некоторые особенности инженерно-геологических изысканий на территориях, пораженных лессовым псевдокарстом // Инженерные изыскания. 2010. № 10. С. 20–23.
- 10. Лаврусевич А.А., Брюхань Ф.Ф., Лаврусевич И.А., Хоменко В.П. Псевдокарстовые явления в четвертичных и коренных отложениях юго-востока Крымского полуострова // Промышленное и гражданское строительство. 2014. № 11. С. 15–18.
- 11. Промышленная экология: учебник для студентов вузов, обучающихся по направлению 270100 «Строительство» (УМО). М.: Форум, 2011. 208 с.
 - 12. Экология энергетики / под ред. В.Я. Путилова. М.: Изд-во МЭИ, 2003. 715 с.

№ 2 (54) – 2016