
Handwritten Text Segmentation using Average Longest Path Algorithm

Dhaval Salvi, Jun Zhou, Jarrell Waggoner, and Song Wang

Department of Computer Science and Engineering

University of South Carolina, Columbia, SC 29208, USA

{salvi,zhouj,waggonej}@email.sc.edu, songwang@cec.sc.edu

Abstract

Offline handwritten text recognition is a very challenging

problem. Aside from the large variation of different hand-

writing styles, neighboring characters within a word are

usually connected, and we may need to segment a word into

individual characters for accurate character recognition.

Many existing methods achieve text segmentation by eval-

uating the local stroke geometry and imposing constraints

on the size of each resulting character, such as the character

width, height and aspect ratio. These constraints are well

suited for printed texts, but may not hold for handwritten

texts. Other methods apply holistic approach by using a set

of lexicons to guide and correct the segmentation and recog-

nition. This approach may fail when the lexicon domain is

insufficient. In this paper, we present a new global non-

holistic method for handwritten text segmentation, which

does not make any limiting assumptions on the character

size and the number of characters in a word. Specifically,the

proposed method finds the text segmentation with the max-

imum average likeliness for the resulting characters. For

this purpose, we use a graph model that describes the pos-

sible locations for segmenting neighboring characters, and

we then develop an average longest path algorithm to iden-

tify the globally optimal segmentation. We conduct exper-

iments on real images of handwritten texts taken from the

IAM handwriting database and compare the performance

of the proposed method against an existing text segmenta-

tion algorithm that uses dynamic programming.

1. Introduction

Offline handwritten text recognition has a wide range of

applications, such as automatic bank check processing and

handwritten postal address recognition. One major chal-

lenge in handwritten text recognition is that neighboring

characters within a word may be connected when written,

as shown in Fig. 1. Many OCR tools are built to recog-

nize individual characters [7, 15, 22, 8]. As a result of this,

to achieve handwritten text recognition, we often need to

segment a connected word (or words) into individual char-

acters [18], which we call handwritten text segmentation in

this paper.

Handwritten text segmentation is a very difficult prob-

lem because there is a large variation in handwriting styles.

For example, people may write the same character in dif-

ferent ways, including in different shapes and sizes, even

within the same word, as shown in Fig. 1(a). As a result,

it is usually difficult to ascertain the number of characters

in a handwritten text to be segmented. Furthermore, the

various ways in which two neighboring characters could be

connected make it very difficult to determine the boundary

that separates neighboring characters by evaluating only lo-

cal stroke geometries.

(a) (b)

Figure 1. An illustration of the challenges in handwritten text seg-

mentation. Note that the two “a”s show different sizes and shapes

in (a) and there are different kinds of connection strokes in (b),

where red vertical lines are the segmentation boundaries between

neighboring characters.

Earlier methods for text segmentation evaluate the local

stroke geometry for segmentation boundaries [12, 5]. For

example, Liang et al. [11] propose two different types of

projections to construct a segmentation, and optimize this

segmentation using a dynamic recursive algorithm and con-

textual information. Between the top and bottom sides of

the text image, Wang et al. [20] find paths with the mini-

mum number of stroke pixels, and use such shortest paths

as the text-segmentation boundaries. However, these overly

simplified criteria for determining the segmentation bound-

aries work only for printed texts, but not handwritten texts.

Recent methods use character recognition for aiding text

segmentation. In these methods, for each resulting text seg-

ment, a character likeliness is first defined to measure how

likely the segment is a valid character using a character

recognition algorithm. Text segmentation is then achieved

505978-1-4673-5052-5/12/$31.00 ©2012 IEEE

when the resulting characters show large character likeli-

ness. For example, in [16] the text image is described by a

feature graph and the text segmentation is achieved by iden-

tifying subgraphs with large character likeliness. Martin et

al. [14] use a sliding window approach to scan horizontally

over the text image, and use a neural network classifier to

measure the character likeliness of the subimage within the

sliding window. Recently, the award winning paper (best

student paper of ICDAR 2009) by Roy et al. [17] use local

stroke geometry to identify a set of candidate segmentation

boundaries, and then use dynamic programming to decide

the final segmentation boundaries that lead to a maximum

total character likeliness.

Many holistic methods have also been developed for text

image segmentation and recognition. In these methods, it

is assumed that the texts presented in the image are valid

words from a set of lexicons [21, 1]. The text image seg-

mentation and word recognition are then solved simulta-

neously by using features from the whole text image. For

example, Arica et al. [3] extend the method used by [10]

to segment characters by running a series of constrained

shortest-path algorithms, and use a Hidden Markov Model

to do word-level recognition. Lee et al. [9] extend the

method developed in [14] by using a cascade neural net-

work classifier. However, if the texts presented in an image

are not valid words (for example, in the application of find-

ing typos), or the lexicon domain is insufficient, the above

holistic methods will fail.

In this paper, we develop a new global non-holistic

method to segment handwritten text by maximizing the av-

erage character likeliness of the resulting text segments.

Different from many previous methods, this proposed

method does not make any limiting assumptions about the

number of resulting characters and the size of an individual

character. We uniformly and densely sample the text image

to construct a set of candidate segmentation boundaries. A

directed graph is then constructed to embed the character

likeliness of the text segments between any two candidate

segmentation boundaries. In this graph, text segmentation

is reduced to the problem of finding an average longest path

between the first and the last candidate segmentation bound-

ary. We find that the average longest path in the constructed

graph can be found in polynomial time with global optimal-

ity. We implement such an algorithm, and test it on real

handwritten text images taken from the IAM handwriting

database.

The remainder of this paper is organized as follows. Sec-

tion 2 provides the technical details of each component of

the proposed method. Section 3 reports the experimental

results on real handwritten text images. A short conclusion

is given in Section 4.

2. Proposed Method

In this paper, we consider binary handwritten text images

with the border fitting tightly around the text. As shown in

Fig. 2, the proposed method consists of several components.

1. Construct the candidate segmentation boundaries, as

shown by the vertical red lines in Fig. 2(b).

2. Construct a directed graph where each vertex repre-

sents a candidate segmentation boundary, including the

left and right image border, where each edge represents

the text segment between two candidate segmentation

boundaries, as shown in Fig. 2(c).

3. Weigh the graph edges by the character likeliness de-

rived from a character recognition algorithm.

4. Find the average longest path between the leftmost ver-

tex (left image border) and rightmost vertex (right im-

age border) in the graph, as shown in Fig. 2(d).

5. Take the candidate segmentation boundaries, corre-

sponding to the vertices along the identified average

longest path, as the final segmentation boundaries for

text segmentation, as shown in Fig. 2(e).

For Component 1, we uniformly and densely partition

the text image, as shown in Fig. 2(c), for the candidate seg-

mentation boundaries. When speed is not a factor, we can

even partition the text image into single-column text seg-

ments. Note that the candidate segmentation boundaries

constructed using this approach contain a large number of

false positives compared to the set of true segmentation

boundaries. While most previous methods need a good ini-

tial set of candidate segmentation boundaries (e.g., cover-

ing all the desired segmentation boundaries with few false

positives), the proposed method can robustly handle a large

number of false positives.

For Component 2, given a set of candidate segmenta-

tion boundaries S1, S2, · · · , Sn that are ordered from left to

right on the text image, as shown in Fig. 2, we construct a

directed graph G = (V,E) as follows:

1. Each candidate segmentation boundary Si will be rep-

resented by a vertex vi in G. Note S1 and Sn represent

the left and right border of the text image.

2. Between each pair of vertices vi and vj , where i < j,

we construct a directed edge eij = (vi, vj) that starts

from vi and ends at vj .

Note that we construct edges between both neighboring and

non-neighboring candidate segmentation boundaries. As

mentioned above, each edge represents the text segment be-

tween two candidate segmentation boundaries. Therefore,

an edge between non-neighboring candidate segmentation

506

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 32 4 5 6 7 8 9 10 11 12 13 1514

Character Recognition)

Edge Weight Evaluation

(Feature Extraction &

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Boundaries

Candidate Segmentation

Average Longest Path

Text Segmentation

Text Image(a)

(b)

(d)

(e)

(c)

Figure 2. An illustration of the components of the proposed method.

boundaries actually represents a text segment that merges

multiple partitions from Component 1. An example is il-

lustrated in Fig. 2, where edge e14 actually indicates that

the first three partitions from Component 1 are merged as a

text segment. If this edge is included in the identified aver-

age longest path, this merged text segment will constitute a

single character in the final text segmentation.

In the following, we first present a method that uses char-

acter recognition for measuring the character likeliness of a

text segment, and use this character likeliness as the edge

weight in the constructed graph. We then develop a graph

algorithm to find the average longest path for text segmen-

tation.

2.1. Character Likeliness Measure

The edge weight w(eij) describes the character likeli-

ness of the text segment between candidate segmentation

boundaries Si and Sj , where i < j. The basic idea is to feed

this text segment (a subimage) into an adapted character

classifier to ascertain its character likeliness: a text segment

fully and tightly covering a single character is expected to

return a high character likeliness while a text segment cov-

ering part of a character, or overlapping multiple characters,

is expected to return a low character likeliness. In this paper,

we train a set of support vector machine (SVM) classifiers

for this purpose.

In this paper, we focus on text consisting of the 26 Ro-

man alphabetic characters. Thus we have 26 classes of char-

acters. We train a binary SVM classifier [4] for each class

of characters. For this purpose, we collect a set of isolated

handwritten characters as training samples. In training the

binary SVM classifier for a specific character class, say “a”,

the training samples in this class are taken as positive sam-

ples and the training samples in the other 25 classes are

taken as negative samples. When a new test sample is fed

into this binary SVM classifier, we obtain a class likeliness

associated with this character class. By testing against all 26
SVM classifiers, we obtain the class likeliness associated

with each of these 26 character classes, and we simply take

the maximum class likeliness as the character likeliness.

More specifically, in this paper we use the lib-

SVM [4] implementation for each binary SVM classi-

fier, which has two outputs: a classification indicator of

positive (+1)/negative (−1), and a probability estimate p

in [0, 1] that describes the confidence of the classification.

If the indicator is +1, we simply take p as the class like-

lihood. If the indicator is −1, we take 1 − p as the class

likelihood because, in this case, p is the negative classifica-

tion confidence.

For a text segment, we extract the HOG (Histogram of

Oriented Gradients) based features [13] as the input for the

SVM classifiers. We first normalize the size of the text seg-

ment to a 28 × 28 image. Each pixel in the image is as-

signed an orientation and magnitude based on the local gra-

dient. The histograms are then constructed by aggregating

the pixel responses within cells of various sizes. Histograms

507

with cell size 14×14, 7×7 and 4×4 with overlap of half the

cell size were used. Histograms at each level are multiplied

by weights 1, 2 and 4 and concatenated together to form a

single histogram. The details of these feature construction

can be found in [13].

2.2. Text Segmentation by Finding Average Longest
Path

Based on the above formulation, the major task of text

segmentation is to identify a subset of candidate segmenta-

tion boundaries Sf1 , Sf2 , · · · , Sfm , where 1 = f1 < f2 <

· · · < fm = n, as the final segmentation boundaries. The

number of final segmentation boundaries, m, is unknown,

and to be discovered in text segmentation. The general prin-

ciple is that the text segments defined by boundary pairs

Sfi and Sfi+1
, i = 1, 2, · · · ,m should show large charac-

ter likeliness. In another words, the graph edges between

vfi and vfi+1
should have a large weight. In [17], this is

formulated as an optimization problem

(m∗, f∗

i ; i = 1, 2, · · · ,m∗)

= arg max
m,fi;i=1,2,··· ,m

m−1∑

i=1

wfi,fi+1
,

where wfi,fi+1
= w(vfi , vfi+1

) is the edge weight between

vfi and vfi+1
. A dynamic programming algorithm can be

applied to find the global optimal solution efficiently. The

major issue with this method is its undesired bias toward

more segmentation boundaries, i.e., larger m, which may

result in an oversegmentation of the text. This can be il-

lustrated by a simple example in Fig. 3, where the text seg-

ments between S1 and S3 have a large character likeliness

(w13 = 1), but this dynamic programming based method

may still choose a segmentation boundary S2 between S1

and S3 because w12 + w23 > w13.

S1 S2 S3

w
23

=0.7w
12

=0.5

=1w13

Figure 3. An illustration of the problem of dynamic programming.

In this paper, we propose to address this problem by

defining a new cost function

(m∗, f∗

i ; i = 1, 2, · · · ,m∗)

= arg max
m,fi;i=1,2,··· ,m

∑m−1
i=1 wfi,fi+1

m− 1
.

which finds a path between v1 and vn with the maximum

average total weight. In this paper, we call this path the av-

erage longest path. Clearly, by introducing the path length

in the denominator in Eq. (1), we remove the bias toward

a larger m and avoid oversegmentation of the text. In the

following, we show that the average longest path in the

constructed graph G can be found in polynomial time, and

present such a polynomial time average longest-path algo-

rithm.

First, on the graph G we define a second edge weight

lij = l(vi, vj) = 1 for each (vi, vj). We then construct

an augmented directed edge (vn, v1) that starts from vn and

ends at v1, as shown in Fig. 4(b). We also set the weight for

this augmented edge as w(vn, v1) = l(vn, v1) = 0. This

way, finding the average longest path in G is reduced to the

problem of identifying a directed cycle C in the augmented

graph G′ with a maximum cycle ratio

∑
e∈C w(e)∑
e∈C l(e)

.

We then transform the edge weight w to W by W (e) =
1 − w(e) for all edges in the augmented graph G′. The

problem is then reduced to finding a cycle with a minimum

cycle ratio ∑
e∈C W (e)∑
e∈C l(e)

.

It is easy to prove that the desired cycle with the mini-

mum cycle ratio is invariant to the edge weight transforma-

tion

W (e)←W (e)− b · l(e) (1)

for any constant b. Clearly, there exists an optimal con-

stant b∗ such that the linear transform in Eq. (1) leads to∑
e∈C W (e) = 0. In this case, the problem is reduced

to finding a zero-weight cycle with
∑

e∈C W (e) = 0. To

search for this optimal b∗ and this zero-weight cycle, we

can use the sequential-search algorithm [2] shown in Algo-

rithm 1 on G′.

Algorithm 1 Sequential-search Algorithm:

1: Initialize b = maxeǫE W (e) + 1. We know that b∗ < b

2: Transform the edge weights using Eq. (1) and then de-

tect a negative cycle C, i.e.,
∑

e∈C W (e) < 0. For the

initial b, there must exist such a negative cycle because

the current b > b∗. If no negative cycle is detected in a

later iteration, return the cycle C detected in the previ-

ous iteration as a minimum ratio cycle in the augmented

graph G′

3: Calculate the cycle ratio
∑

e∈C
W (e)

∑
e∈C

l(e) using the origi-

nal edge weights W without applying the linear trans-

formation (1), using this calculated cycle ratio as the

new b, and then return to Step 2.

Negative cycle detection is a well-solved polynomial-

time problem [6] and has a worst-case running time of

O(n2mlog(n)). Here n is the number of nodes in the

508

w
12

w
13

w
14

w
15

23
w

w
24

25
w

w
45

w
35

w
34

1 2 3 4 5

w
12

w
13

w
14

w
15

23
w

w
24

25
w

w
45

w
35

w
34

1 2 3 4 5

0

(b)(a)

Figure 4. An illustration of adding an augmented edge for finding the average longest path in G. (a) Original graph G. (b) Graph augmented

by an edge (vn, v1).

graph and m is the number of edges. The complete pro-

posed handwritten text segmentation algorithm can be sum-

marized by Algorithm 2.

Algorithm 2 Handwritten Text Segmentation:

1: Construct candidate segmentation boundaries by uni-

formly and densely sampling the text image.

2: Construct graph G representing candidate segmentation

boundaries as vertices. Construct forward edges be-

tween each pair of vertices.

3: Define the edge weight w to reflect the character like-

ness.

4: Find the average longest path in the constructed graph

by using the graph algorithm described in Section 2.2.

5: Keep the candidate segmentation boundaries whose

corresponding vertices are included in the identified av-

erage longest path as the final text segmentation bound-

aries.

3. Experiments

In our experiments we use the standard IAM handwriting

database. This database consists of 657 different writers and

1539 pages of scanned text. For testing, we randomly se-

lected a set of 300 handwritten words from this IAM hand-

writing database. These words were collected from a subset

of 50 different writers. Each word is made up of 2 to 9 char-

acters, drawn from 26 lowercase characters. The characters

in each word are written in a connected fashion, and we ap-

ply the proposed text segmentation method to segment each

word into individual characters. We also collected charac-

ters in isolation for these 26 character classes from a train-

ing set of 200 words from the same database without any

overlap to the 300 words used for testing, and we use these

isolated characters as training samples for the SVM classi-

fiers. For each character, we collected 50 training samples

giving us a total of 1300 training samples.

In constructing the candidate segmentation boundaries,

we uniformly sample each test word with an interval of 10
pixels. To quantitatively evaluate the performance of a text

segmentation, we manually construct a ground truth seg-

mentation for each test word. Specifically, we present, to

a human evaluator, each test word overlaid by the candi-

date segmentation boundaries. The human evaluator sim-

ply selects a subset of these boundaries that best separate

all the characters as the ground-truth segmentation bound-

aries. To evaluate a segmentation result, we calculate the

precision and recall in finding these ground-truth segmenta-

tion boundaries. Here a text segment is true positive only if

it spatially overlaps with a ground-truth segment perfectly.

Table 1 shows the average precision, average recall, and

their standard deviations in terms of all the 300 test words,

together with the average F-score that combines precision

and recall.

AP SP AR SR F-score

Proposed 0.7968 0.2158 0.7961 0.2390 0.7965

DP [17] 0.6090 0.2203 0.5060 0.2515 0.5526

Table 1. Precision/Recall statistics for the proposed method and

the comparison method on all the 300 test words. AP is average

precision, AR is average recall, SP is the standard deviation of the

precision, and SR is the standard deviation of the recall.

For comparison, we implement the dynamic program-

ming (DP) based text segmentation method developed

in [17]. As discussed above, this method has a bias to-

ward oversegmentation and requires a good initial candidate

segmentation with few false positives. Following the basic

ideas described in [17], we adopt the following two strate-

gies to prune more candidate segmentation boundaries be-

fore applying dynamic programming for text segmentation.

1. Prune all the candidate segmentation boundaries that

enter stroke pixels more than twice when scanning

from the top to the bottom.

2. Do not allow the dynamic programming algorithm to

consider text segments that have an aspect ratio greater

than 1.2.

For fair comparison, we use the same histogram of oriented

gradients feature [13] for this comparison method as we

509

l i f e

l a b o u r l a b o u r

t h e t h e

l i f e

s c o r e s c o r e

w e r e w e r e

d e m o n d e m o n

p r e s s u r e p r e s s u r e

a r e a r e

m e m b e s m e m b e s

b e l l b e l l

n e x tn e x t

n a t i o n a l n a t i o n a l

b o a r d b o o a r d

f e e t f e l t

b e e n b e e n

d a y s d a y s

Figure 5. Text segmentation on a subset of the test words. For each test word, we show the segmentation from: (Left) the ground truth,

(Middle) the proposed method, and (Right) the dynamic programming based method [17]. The characters below the test words for the

proposed method (Middle column) are the recognition results from the character class corresponding to the character likeliness. The

characters below the test words for ground truth (Left column) are the ground-truth characters for these words.

used for the proposed method (see Section 2). The perfor-

mance of this dynamic programming method is also shown

in Table 1. We can clearly see that the proposed method out-

performs this dynamic programming based method. Sample

segmentation results are shown in Fig. 5, where the charac-

ter recognition results for the proposed method (shown be-

low each word) are obtained from the character class corre-

sponding to the character likeliness. We can see that, even

with the additional strategies reducing false positives, the

dynamic programming based method still produces many

oversegmentations. Note that characters such as “L” in the

word “Labour” and “B” in the word “Bell” are still recog-

nized using the same classifier which is trained only on 26

lowercase characters.

Using the above precision/recall metric does not well

quantify the segmentation discrepancy in pixels. To address

this issue, we further evaluate the spatial overlap between

the ground-truth segmentation and the segmentation from a

test method. Specifically, given each text segment T result-

ing from a test method, we find its best overlapped ground-

truth text segment TG and calculate their spatial-overlap dif-

ference as

φ(T, TG) = 1−
T ∩ TG

T ∪ TG

.

A lower spatial overlap difference indicates a better seg-

mentation. We calculate the average of this overlap dif-

ference over each obtained text segment, and then over

all the 300 test words. The performance of the proposed

method and the comparison method, in terms of this over-

lap difference, is shown by the box plot in Fig. 6. Clearly,

the proposed method achieves much better text segmenta-

tion.

A fair comparison with holistic methods against pro-

posed method is not possible since holistic methods utilize

trained models for each word to recognize each test word

according to a fixed set of lexicon. Proposed method does

not employ such a lexicon based word classifier and this

will enable the use of our method to more general appli-

510

0.2

0.3

0.4

0.5

0.6

0.7

0.8

proposed method DP based method

A
v

er
ag

e
S

p
at

ia
l

O
v

er
la

p
 D

if
fe

re
n

ce

Figure 6. Average spatial overlap difference over all the 300 test

words, using the proposed method and the comparison method

based on dynamic programming

cation domains where the handwritten texts cannot be mod-

eled by a fixed set of lexicons. Since the 300 IAM handwrit-

ten texts used in our experiments are valid English words,

we conduct a simple experiment to see how many words out

of these 300 can be correctly recognized by applying the

spelling-check tool (in the Microsoft Office) to the segmen-

tation and character recognition results from the proposed

method. If any one of the top four candidate words provided

by the spelling check is correct, we count this text as cor-

rectly recognized. We found that using this spelling check,

we can get 65% of these 300 test words correctly recog-

nized. One previous holistic method [19] reported 73.45%

of recognition rate on 300 test words from IAM database.

However, it is unclear to us which 300 test words are used

in [19] and what kind of the lexicons are used in achieving

this rate.

Without setting any limiting constraints on the size and

aspect ratio of the segmented characters, the proposed

method has an advantage in segmenting handwritten texts

in which character size varies substantially from one to an-

other. This is particularly useful in applications where the

text is distorted in scanning. For example, when the page to

be scanned is not tightly pressed on the scanner, some texts

may become smaller and thinner in the scanned text image.

Figure 7 shows three such examples, where the right side

of each word is condensed horizontally and the characters

become thinner from left to right in each word. We found

that the proposed method can successfully segment these

words as shown in Fig. 7, even without training the SVM

classifiers using any such distorted characters.

We also conduct experiments to show the effectiveness

of character likeliness, as defined by the output of multi-

ple binary SVM classifiers (see Section 2), in distinguish-

ing characters and non-characters. In the test words, we

randomly select 400 text segments, in which 200 are char-

acters from the ground truth, and 200 are non-characters

constructed by either taking the left or right half of a charac-

ter, or merging the right half of one character to the left half

of the next character in the same word. We evaluate their

b e e n b e l la g o

Figure 7. Examples of segmenting three distorted texts. (Top)

Original texts. (Second row) Distorted texts. (Third row) Text seg-

mentation using the proposed method. (Bottom) Character recog-

nition from the class corresponding to the character likeliness.

character likeliness, which is shown in Fig. 8. We can see

that the 200 characters (blue) show a much higher average

character likeliness than the 200 non-characters (red). How-

ever, we can also see that some characters show low char-

acter likeliness and some non-characters show high charac-

ter likeliness, because of the ambiguity and complexity un-

derlying the handwriting. For example, the left half of the

character “W” is indistinguishable from the character “V”

and has a high character likeliness. However, in Fig. 8 we

always count half of a character as a non-character.

 Number of test samples

Mean: 0.8016

Mean:0.0716

ch
ar

ac
te

r
L

ik
el

in
es

s

Figure 8. Character likeliness calculated for 200 characters

and 200 non-characters.

This kind of ambiguity can lead to failures of the pro-

posed method in text segmentation. Several examples are

shown in Fig. 9. In Fig. 9(a), the character “w” is over-

segmented into a “n” and a “v”, both of which show high

character likeliness. In Fig. 9(b), two contiguous characters

“ub” are not correctly segmented because their combina-

tion resembles the character “w” and bears a high character

likeliness. Similarly, in Fig. 9(c), two contiguous charac-

ters “ur” are not correctly segmented because their combi-

nation also resembles character “w” and bears a high char-

acter likeliness. Such ambiguity cannot be well addressed

by considering only the text-image information or the stroke

shape.

On the speed of the proposed method, we implemented

511

n v a s d o w t h o w s

(a) (b) (c)

Figure 9. Examples where the proposed text segmentation method

fails.

the entire algorithm in Matlab, and run on a 2GHz Linux

workstation with 8 GB of RAM. For a text image with

roughly 30 candidate segmentation boundaries, the pro-

posed method takes about 10 seconds to complete. For

the 300 test words, the proposed method takes an average

of 14 seconds per word for text segmentation.

4. Conclusion

In this paper, we developed a new graph-based method to

segment connected handwritten text into individual charac-

ters for text recognition. Different from previous methods,

the proposed method does not require a good initial set of

candidate segmentation boundaries, and does not make any

limiting assumptions on the number, size, width, height, or

aspect ratio of the characters. We adapted a character recog-

nition algorithm using SVM classifiers to measure the char-

acter likeliness of each text segment, and then searched for a

text segmentation that leads to a maximum average charac-

ter likeliness. This avoids any possible bias toward an over-

segmentation that encumbers previous methods. Specifi-

cally, we developed a graph algorithm to find the optimal

segmentation with the maximum average character likeli-

ness. We collected a set of real, handwritten text images for

both training and testing, and found that the performance of

the proposed method is superior to a previous method that

uses dynamic programming.

Acknowledgements

This work was supported, in part, by AFOSR FA9550-

11-1-0327, NSF IIS-0951754, NSF IIS-1017199, NEH HK-

50032-12, and ARL under Cooperative Agreement Number

W911NF-10-2-0060.

References

[1] Z. A. Aghbari and S. Brook. Hah manuscripts: A holis-

tic paradigm for classifying and retrieving historical arabic

handwritten documents. Expert Systems with Applications,

36(8):10942 – 10951, 2009.

[2] R. Ahuja, T. Magnanti, and J. Orlin. Network flows: Theory,

algorithms, and applications. In Prentice Hall, 1993.

[3] N. Arica and F. Yarman-Vural. Optical character recognition

for cursive handwriting. IEEE PAMI, 24(6):801 –813, June

2002.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support

vector machines, 2001.

[5] T. Chang and S. Chen. Character segmentation using convex-

hull techniques. International Journal of Pattern Recogni-

tion and Artificial Intelligence, 13(6):833, September 1999.

[6] B. V. Cherkassky and A. V. Goldberg. Negative-cycle de-

tection algorithms. In Proceedings of the Fourth Annual Eu-

ropean Symposium on Algorithms, pages 349–363, London,

UK, 1996.

[7] A. Djematene, B. Taconet, and A. Zahour. A geometrical

method for printed and handwritten berber character recog-

nition. In ICDAR, pages 564–567, 1997.

[8] V. Govindaraju and H. Xue. Fast handwriting recognition for

indexing historical documents. In Document Image Analysis

for Libraries, pages 314–320, 2004.

[9] S. Lee and Y. Kim. A new type of recurrent neural network

for handwritten character recognition. In ICDAR, pages 01–

38, 1995.

[10] S.-W. Lee, D.-J. Lee, and H.-S. Park. A new methodology

for gray-scale character segmentation and recognition. IEEE

PAMI, 18:1045–1050, 1996.

[11] S. Liang, M. Ahmadi, and M. Shridhar. Segmentation of

touching characters in printed document recognition. In IC-

DAR, pages 569–572, 1993.

[12] Y. Lu. On the segmentation of touching characters. In IC-

DAR, pages 440–443, 1993.

[13] S. Maji and J. Malik. Fast and accurate digit classification.

Technical Report UCB/EECS-2009-159, EECS Department,

University of California, Berkeley, Nov 2009.

[14] G. Martin, M. Rashid, and J. A. Pittman. Integrated segmen-

tation and recognition through exhaustive scans or learned

saccadic jumps. International Journal of Pattern Recogni-

tion and Artificial Intelligence, 7(4):831–847, 1993.

[15] L. Mico and J. Oncina. Comparison of fast nearest neigh-

bor classifiers for handwritten character recognition. Pattern

Recognition Letters, 19(3-4):351–356, March 1998.

[16] J. Rocha and T. Pavlidis. Character recognition without seg-

mentation. IEEE PAMI, 17(9):903–909, 1995.

[17] P. P. Roy, U. Pal, J. Llads, and M. Delalandre. Multi-oriented

and multi-sized touching character segmentation using dy-

namic programming. In ICDAR, pages 11–15, 2009.

[18] J. Song, Z. Li, M. Lyu, and S. Cai. Recognition of merged

characters based on forepart prediction, necessity-sufficiency

matching, and character-adaptive masking. IEEE Transac-

tions on Systems,Man and Cybernetics, 35(1):2–11, Febru-

ary 2005.

[19] U. v. Marti and H. Bunke. Text line segmentation and word

recognition in a system for general writer independent hand-

writing recognition. In ICDAR, pages 159–163, 2001.

[20] J. Wang and J. Jean. Segmentation of merged characters

by neural networks and shortest-path. In Proceedings of

the 1993 ACM/SIGAPP symposium on Applied computing:

states of the art and practice, pages 762–769, New York,

NY, USA, 1993.

[21] X. Wang, V. Govindaraju, and S. Srihari. Holistic recog-

nition of handwritten character pairs. Pattern Recognition,

33(12):1967 – 1973, 2000.

[22] H. Xue and V. Govindaraju. On the dependence of handwrit-

ten word recognizers on lexicons. IEEE PAMI, 24(12):1553–

1564, December 2002.

512

