Stock Prices Dynamics Forecasting with
Recurrent Neural Networks

1%'Tatyana Vasyaeva
Automated Control Systems

Donetsk National Technical University

Donetsk, Ukraine
vasyaeva@gmail.com

3 Sergii Khmilovyi
Automated Control Systems
Donetsk National Technical University
Donetsk, Ukraine
hmelevoy.sergey @gmail.com

Abstract—The application of deep neural networks was
examined in the area of stock prices forecasting of phar-
macies chain "36 and 6'. The learning sample formation
in the time series area was shown and the neural net-
work architecture was proposed. The neural network for
exchange trade forecasting using Python’s Keras Library
was developed and trained. The basic parameters setting
of algorithm have been carried out.

Keywords—Machine Learning, Deep Learning, Recur-
rent Neural Networks, Simple Recurrent Neural Network,
Update Gate and Reset Gate, Long short-term memory,
Time Series, Stock Prices.

I. INTRODUCTION

Effective actions on the stock exchange are connected
with a careful analysis of all that’s happening on the
market. Good and effective prediction systems for stock
market help traders, investors, and analyst by providing
supportive information like the future direction of the
stock market. In order to make the forecasting as reliable
as possible, and the forecasts — well grounded, traders
use exchange analysis. Widely used methods of analysis,
to which most market participants are accustomed [1],
are not always effective. That’s why over recent years,
financial analysts have become of great interest in such
a direction as machine learning [2] and in particular
artificial neural networks [3] . In contrast to the clas-
sical methods of exchange analysis [1], which involve
the implementation of ready-made algorithms, machine
learning allows the system to learn how to recognize
patterns and make forecasts.

In our work we will consider the problem of predicting
the future stock prices of the pharmacies chain "36 and
6" based on the values of their stock prices in the past, as
well as additional data of exchange trade for the period
under report. Future stock price prediction is probably
the best example of time series forecasting [4], [5].

2" Tatyana Martynenko
Automated Control Systems
Donetsk National Technical University
Donetsk, Ukraine
tatyana.v.martynenko @ gmail.com

4™ Natalia Andrievskaya
Automated Control Systems

Donetsk National Technical University

Donetsk, Ukraine
nataandr @yandex.ru

II. DATA REPRESENTATION

The data that we are going to use for this article can
be downloaded from servers "FINAM" and their web
resource [6]. From the list of securities (instruments)
provided by "FINAM" company we will take the data
of quotations of the pharmacies chain "36 and 6". The
received information provided by Moscow Exchange
PJSC has the following format (Table I): date, opening
price, maximum price, minimum price, closing price,
volume. Usually datasets for working with time series

Table 1
DATA REPRESENTATION.

OPEN | OIGH | LOW | CLOSE | VOL
T3.4100 | 13,7500 | 134000 | 135900 | 255490
134800 | 13.6900 | 13.3300 | 13.4200 | 151960
13.5400 | 14.6100 | 13.4400 | 14.5200 | 433440
14.6900 | 14.9100 | 14.4100 | 14.7600 | 178030
147500 | 152300 | 14.6500 | 15.1000 | 151950
14.8800 | 14.9500 | 14.6500 | 14.7900 | 77570

form a "sliding window" [4], [5] with a width equal to
the depth of immersion. After the data are prepared in
this way they will have such form (see Table II). As a
rule of thumb, whenever you use a neural net-work, you
should normalize or scale your data. We normalize the
obtained data and divide it into parts. A common dataset

Table 11
TRAINING DATA.
Ne OPEN | HIGH | LOW | CLOSE | VOL
1
2

277

after the transformations shown in Tab. II, with depth of
immersion =100 has a size of 5x100x1260. To build the
model, we will use a set consisting of 851 simples (of
1260 total), and under the validation set we will allocate
1% of this data. As a result, we get (see Tab. III).

Table III
TRAINING, VALIDATION AND TESTING DATASET.

Training Validation Testing

[765 Data Points | 86 Data Points | 309 Data Points |

III. MATERIALS AND METHODS

Nowadays deep neural networks become one of the
most popular approaches to solving a wide variety of
problems [7]-[10]. There is no unambiguous definition
of what a deep neural network is. In this work, the term
deep neural network will be understood as a neural net-
work that contains more than one hidden layer. To train
neural networks, including deep ones, we use the error
back-propagation algorithm [3] based on the gradient
descent method.

Recurrent Neural Networks (RNN). RNN [11]- are
the networks with loops in them, allowing information
to persist. There is a chunk of neural network (See Fig.
1). The network takes the input value xi and returns value
hi. A loop allows information to be passed from one step
of the network to the next. A recurrent neural network
can be thought of as multiple copies of the same network,
each passing a message to a subsequent copy. If we unroll
the loop, we will get the following (see Fig. 1). So, RNN
is a deep neural network. Simple RNN (see Fig. 2) is the

T

s
L

Figure 1. The fragment of recurrent neural network and an unrolled
recurrent neural network..

=)
Gt

E—» @

(Fr— = —(;

RNN, where output is calculate as simple multiplication
of Input (xi) and Previous Output (hi-1). Passed through
Tanh activation function. No Gates present. Deep neural

0 %1 g [

Figure 2. The repeating module in Simple RNN.

networks with many hidden layers are difficult to train
because of the vanishing gradient problem. The problem
of vanishing gradient can be solved by the architecture
of a recurrent neural network called a network of long
short—term memory [11], [12] and Update Gate and
Reset Gate [13]. Long short-term memory (LSTM). The
structure LSTM [11] reminds of same chain as on Fig.
3 but modules look and interact in a different way (see
Fig. 3).

The key component of LSTM — is cell state. Cell state
participates in several linear transformations. LSTM can
erase information from cell state; this process is regulated
by structures called gates. They are composed out of a
sigmoid neural net layer and a pointwise multiplication
operation. LSTM-network gates: "input gate layer", "out-
put gate layer" and "forget gate layer" [12]. "Forget gate

]

Neural Network Pointwi se
Layer Operation

O—’>"—<Z

Vector

Concatenate
Transfer oop

Figure 3. Recurrent LSTM network.

layer". The "forget gate layer" controls erasing or saving
the cell state information based on the new input value
and the value received from the previous iteration. The
sigmoid layer returns numbers from zero to one which
indicate what part of information should be passed on the
network. Zero in this case means "do not miss anything",
one — "skip all". "Input gate layer". "Input gate layer"
determines when data should be written to the cell. The
sigmoid layer, as before, returns numbers from zero to
one based on the new input value and the value from
the previous iteration. Now the sigmoid layer indicates
what part information will be recorded, and the tanhlayer
generates values that can be added to the cell state. As a
result combination of new value and previous one will be
recorded to the cell. When the data should be saved and
to what extent and when they should be replaced with
new ones and to what extent the neural network "decides
itself" in learning process. "Output gate layer". "Output
gate layer" determines what information we receive at the
output. The output data will be based on the cell state
and some gates will be applied to it. First, a sigmoid
layer decides what information from the cell state we
will output. The cell state values then pass through the
tanhlayer to obtain values from the range -1 to 1 at the
output and are multiplied with the output values of the
sigmoid layer allowing only the required information to

278

be displayed. Gated Recurrent Unit (GRU). The structure
GRU (See Fig. 4) as LSTM has some gates: "Update gate
layer" and "forget gate layer", their purpose is the same
as one.

h:
hf

«Hadamart product»
operation

(]

«sigmoid»
operation

«tanh»
function

«plus»
operation

Figure 4. Recurrent GRU network.

IV. NEURAL NETWORK ARCHITECTURE.

The following neural network architecture was devel-
oped experimentally (see Fig. 5). The network consists of
an input layer, three LSTM layers and one dense output
layer with activation function Relu. The input data sets
are 5100 in size (depth of immersion = 100). On the first
LSTM layer there are 500 units and the other two have
100 units each. On the last layer there is 1 unit as we
need only one output (forecast horizon = 1). After every
LSTM layer the Dropout [14] is used, i.e. when training
every training sample the network is rebuilt in such way
that a certain set of units falls out (see Fig. 6). Developed
neural network has the following view (see Fig. 7).

5100 500 100 100 1

L2 7
L2 7

r
v
y

INPUT LST™ LETM LSTM Relu

Figure 5. The architecture of proposed model.

Figure 6. Dropout.

nputs

Figure 7. Neural network architecture.

V. EXPERIMENT

In the environment of Colab Laboratory [15] there
was performed a software implementation of a neural
network for future stock price prediction with LSTM
using Python’s Keras Library. Colab Laboratory is a free
environment for Jupyter notebooks which requires no set-
ting up and runs entirely in the cloud. Colab Laboratory
allows you to write and execute code, as well as to get
access powerful computing resources, which is an im-
portant advantage when working with resource-intensive
machine learning algorithms. Keras [16] is one of the
most powerful and easy-to-use Python’s libraries for the
development and evaluation of deep learning models cov-
ering the effective libraries of numerical computations
Theano and TensorFlow. The advantage of this is mainly
that it is possible to work with neural networks in a fairly
simple way. Let‘s conduct experiments on neural network
training (Tables IV- XII). As an optimizer we will use

Table IV
EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER = «SGD»,
SIMPLE RNN.

Ep Training set Validation set Test set

MSE MAE MSE MAE MSE MAE
50 | 0.0931 | 0.2512 | 0.0505 | 0.2245 | 0.0938 | 0.3038
100 0.00 0.0562 | 0.0053 | 0.0711 | 0.0039 | 0.0583
150 | 0.0041 | 0.0502 | 9.05e-4 | 0.0244 | 0.0004 | 0.0138
200 | 0.0026 | 0.0367 | 6.54e-4 | 0.0236 | 0.0020 | 0.0420
250 | 0.0019 | 0.0321 0.003 0.0537 | 0.0032 | 0.0530
300 | 0.0023 | 0.0356 | 4.99¢-4 | 0.0176 | 0.0004 | 0.0148
350 | 0.0016 | 0.0306 | 3.3le-4 | 0.0147 | 0.0004 | 0.0162
400 | 0.0022 | 0.0351 | 1.85e-4 | 0.0116 | 0.0005 | 0.0170
450 | 0.0014 | 0.0275 | 6.88e-4 | 0.0215 | 0.0014 | 0.0286
500 | 0.0014 | 0.0274 | 3.06e-4 | 0.0141 | 0.0007 | 0.0223

a stochastic gradient descent optimizer (Tables IV- VI),
which is traditional for neural networks training. Loss
function (function of optimization estimation) — mean
squared error. The metric (the function that is used to
evaluate the model) - mean absolute error.

VI. RESULTS AND DISCUSSION

In this work the neural network model has been sug-
gested in the area of stock prices forecast for pharmacies
chain "36 and 6". The neural network architecture has
been developed. Network consists of LSTM layers and a

279

Table VIII

Table V EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER =
EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER = «SGD», "RMSPROP", GRU.
GRU.
_ — Ep Training set Validation set Test set
Ep Training set Validation set Test set MSE MAE MSE MAE MSE MAE
MSE | MAE | MSE | MAE | MSE | MAE 100 | 0.0012 | 0.0280 | 2.88¢-5 | 0.0047 | 2.24e-5 | 0.0042
125 | 0.0011 0.0258 | 1.16e-5 | 0.0028 | 0.0002 | 0.0114
250 | 0.0019 | 0.0321 | 0.0034 | 0.0537 | 0.0032 | 0.0530 150 | 9.0le-4 | 0.0233 | 1.68e-4 | 0.0127 | 0.0005 | 0.0227
275 | 0.0023 | 0.0371 | 9.29-4 | 0.0259 | 0.0004 | 0.0160 175 | 7.62e-4 | 0.0217 | 1.44e-4 | 00117 | 7.79¢-5 | 0.0082
300 | 0.0023 | 0.0356 | 4.99e-4 | 0.0176 | 0.0004 | 0.0148 200 | 5.24e-4 | 00175 | 1.12¢-5 | 0.0027 | 7.71e-5 | 0.0075
325 | 0.0017 | 0.0301 | 5.09e-4 | 0.0196 | 0.0005 | 0.0170 225 | 6.43e-4 | 0.0193 | 8.59-5 | 0.0088 | 0.0004 | 0.0182
350 | 0.0016 | 0.0306 | 3.3le-4 | 0.0147 | 0.0004 | 0.0162 250 | 4.70e-4 | 0.0169 | 6.39e-4 | 0.0251 | 0.0018 | 0.0417
375 | 0.0015 | 0.0293 | 2.68e-4 | 0.0139 | 0.0005 | 0.0168 275 | 4.46e-4 | 0.0162 | 1.80e-5 | 0.0036 | 7.51e-5 | 0.0080
400 | 0.0022 | 0.0351 | 1.85e-4 | 0.0116 | 0.0005 | 0.0170 300 | 3.72e-4 | 0.0151 1.48¢-5 | 0.0032 | 3.13¢e-5 | 0.0049
425 | 0.0013 | 0.0275 | 5.68e-4 | 0.0191 | 0.0012 | 0.0228 325 | 3.62c-4 | 0.0144 | 5.22¢-5 | 0.0069 | 0.0001 | 0.0107
450 | 0.0014 | 0.0275 | 6.88e-4 | 0.0215 | 0.0014 | 0.0286 350 | 1.85e-4 | 0.0100 | 6.24e-6 | 0.0018 | 1.18e-5 | 0.0019
475 | 0.0019 | 0.0322 | 1.40e-4 | 0.0079 | 0.0003 | 0.0155 375 | 3.26e-4 | 0.0140 | 3.72e-4 | 0.0191 0.0007 | 0.0265
500 | 0.0014 | 0.0274 | 3.06e-4 | 0.0141 | 0.0007 | 0.0223 400 | 2.77e-4 | 0.0127 | 1.55¢-4 | 0.0121 | 0.0006 | 0.0231
Table IX
Table VI EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER =
EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER = «SGD», "RMSPROP", LSTM.
LSTM.
Ep Training set Validation set Test set
Ep Training set Validation set Test set MSE MAE MSE MAE MSE MAE
MSE MAE MSE MAE MSE MAE 100 | 6.026e-4 | 0.0185 | 1.487e-4 | 0.0119 | 0.0003 | 0.0220
150 | 0.0024 | 0.0347 | 1.58e-4 | 0.0090 | 0.0002 | 0.0118 125 | 8.697e-4 | 0.0228 1.723e-5 | 0.0034 0.0003 0.0173
175 | 0.1967 | 0.4219 | 0.0538 | 0.2313 | 0.0148 | 0.1039 150 | 3.978e-4 | 0.0146 | 4.024e-5 | 0.0057 | 0.0005 | 0.0256
200 | 0.0021 | 0.0318 | 1.72e-4 | 0.0099 | 0.0002 | 0.0128 175 | 6.145e-4 | 0.0189 | 8.031e-5 | 0.0086 | 5.27e-5 | 0.0066
225 | 0.0019 | 0.0303 | 2.24e-4 | 0.0119 | 0.0004 | 0.0182 200 | 7.348e-4 | 0.0208 | 1.654e-4 | 0.0125 | 0.0002 | 0.0103
250 | 0.0019 | 0.0297 | 1.4le-4 | 0.0084 | 0.0001 | 0.0107 225 | 5.222e-4 | 0.0179 | 9.030e-5 | 0.0090 | 0.0008 | 0.0259
275 | 0.0019 | 0.0299 | 1.90e-4 | 0.0105 | 0.0002 | 0.0144 250 | 4.442e-4 | 0.0166 | 1.405e-5 | 0.0032 | 6.09¢-5 | 0.0069
300 | 0.0019 | 0.0295 | 2.33e-4 | 0.0122 | 0.0004 | 0.0189 275 | 4.244e-4 | 0.0149 | 1.830e-4 | 0.0133 | 0.0003 | 0.0170
325 | 0.0020 | 0.0310 | 1.65e-4 | 0.0094 | 0.0003 | 0.0129 300 | 3.782e-4 | 0.0146 0.0013 0.0341 0.0083 | 0.0861
350 | 0.0018 | 0.0297 | 2.28e-4 | 0.0119 | 0.0005 | 0.0199 325 | 4915e-4 | 0.0176 | 7.736e-5 | 0.0076 | 0.0026 | 0.0423
375 | 0.0018 | 0.0291 1.31e-4 | 0.0080 | 0.0002 | 0.0108 350 | 3.653e-4 | 0.0139 | 4.351e-4 | 0.0207 | 0.0007 | 0.0256
400 | 0.0017 | 0.0279 | 2.16e-4 | 0.0118 | 0.0005 | 0.0199 375 0.1967 0.4219 0.0538 0.2313 | 0.0148 | 0.1039
400 0.1967 0.4219 0.0538 0.2313 | 0.0148 | 0.1039
It is recommended to use "RMSprop" optimizer for recurrent neural
networks according to [11] Table X- XII shows the results using another common optimizer

Table VII

EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER =

"RMSPROP", SIMPLE RNN.

«adam». A good results are obtained for a LSTM neural network
trained in 150 epochs, optimizer «adam». The best results are obtained
for a neural network trained in 350 and 400 epochs.

Table X

EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER =
«ADAM>», SIMPLE RNN.

Ep Training set Validation set Test set
MSE MAE MSE MAE MSE MAE Ep ’I‘rainmg set Validation set Test set

MSE | MAE | MSE | MAE | MSE | MAE
200 | 01967 | 04219 | 00538 | 0231 | 00148 | 0.1039 100 | 0.0200 | 0.119 | 0.0516 | 0.226 | 0.1292 | 0.3538
250 | 0.0210 | 0.1201 | 0.0518 | 0.231 | 0.1297 | 0.3545 125 | 00212 | 0.119 | 0.0646 | 0253 | 0.1491 | 0.3809
300 | 0.1967 | 0.4219 | 0.0538 | 0.231 | 0.0148 | 0.1039 150 | 0.1967 | 0.421 | 0.0538 | 0231 | 0.0148 | 0.1039
350 | 00205 | 01180 | 00251 | 0.157 | 00852 | 02849 175 | 0.0201 | 0.117 | 0.0619 | 0.248 | 0.1424 | 0.3723
400 | 0.0094 | 0.0755 | 2.87e-4 | 0.013 | 0.0215 | 0.1319 200 | 0.0017 | 0.036 | 5.32e-5 | 0.005 | 0.0012 | 0.029
450 | 0.1967 | 04219 | 0.0538 | 0.231 | 0.0148 | 0.1039 250 | 0.1967 | 0.421 | 0.0538 | 0231 | 0.0321 | 0.1468
600 | 0.1967 | 0.4219 | 0.0538 | 0.231 | 0.0148 | 0.1039 325 | 0.0045 | 0.053 | 0.0038 | 0.057 | 0.0032 | 0.0497
700 | 01967 | 04219 | 00538 | 0231 | 00148 | 0.1039 350 | 0.1967 | 0.421 | 0.0538 | 0.231 | 0.0148 | 0.1039
300 | 00201 | 01163 | 00120 | 0112 | 00615 | 02399 400 | 0.1967 | 0.421 | 0.0538 | 0.231 | 0.0148 | 0.1039
900 | 0.0196 | 0.1158 | 0.0299 | 0.172 | 0.0938 | 0.2997 450 | 0.1967 | 0.421 | 0.0538 | 0231 | 0.0148 | 0.1039
1000 | 0.1967 | 0.4219 | 0.0538 | 0.231 | 0.0148 | 0.1039 475 1 0.0012 | 0.026 | 6.05e-5 | 0.006 | 0.0016 | 0.0331
500 | 0.1967 | 0.421 | 0.0538 | 0.233 | 0.0148 | 0.1039

280

Table XI
EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER = Price Predictions
«ADAM»,GRU.

= Actusl Open Price
=== Predictad Open Frice |1 per step)

Ep Training set Validation set Test set
MSE MAE MSE MAE MSE MAE ;
100 | 5.11e-4 | 0.0164 | 1.42e-5 | 0.0027 | 3.84e-5 | 0.0055
125 | 4.94e-4 | 0.0164 | 4.57¢-5 | 0.0058 | 8.36e-5 | 0.0086 £

150 | 3.27e-4 | 0.0136 | 3.28¢-5 | 0.0053 | 2.70e-5 | 0.0047 2
175 | 3.51e-4 | 0.0138 | 6.15¢-5 | 0.0073 | 7.88e-5 | 0.0086
200 | 2.91e-4 | 0.0123 | 2.98e-5 | 0.0047 | 0.0148 | 0.1039
225 | 3.25e-4 | 0.0137 | 8.18e-6 | 0.0022 | 1.90e-5 | 0.0038
250 | 2.36e-4 | 0.0111 | 2.62e-5 | 0.0045 | 1.1le-5 | 0.0027

275 | 2.31e-4 | 0.0113 | 1.20e-5 | 0.0028 | 3.66e-5 | 0.0055 1
300 | 1.87e-4 | 0.0099 | 9.99e-6 | 0.0026 | 6.20e-5 | 0.0066 [) 10 150 00 P 00
325 | 2.04e-4 | 0.0106 | 1.3%-5 | 0.0029 | 3.94e-5 | 0.0057 et

350 | 2.08e-4 | 0.0109 | 2.64e-5 | 0.0047 | 1.52e-5 | 0.0032
375 | 1.72¢e-4 | 0.0095 | 5.43e-6 | 0.0016 | 9.69¢-6 | 0.0025 Figure 9. The results of the forecast on the test sample (P = 475,
400 | 1.84e-4 | 0.0099 | 1.20e-5 | 0.0028 | 5.27e-6 | 0.0017 | optimizer = "adam"). SimpleRNN.

Table XII) _
Price Predictions Traning Data
EXPERIMENTS ON NETWORK TRAINING FOR OPTIMIZER = . 2y
«ADAM>», LSTM. tuvts, == Preticled Open Price

Ep Training set Validation set Test set

MSE MAE MSE MAE MSE MAE
100 | 7.98e-4 | 0.0215 | 3.71e-5 | 0.0041 | 3.69¢e-5 | 0.0041
125 | 4.73e-4 | 0.0159 | 1.19e-4 | 0.0099 | 0.0305 | 0.1746 :

150 | 5.43e-4 | 0.0174 | 2.58e-5 | 0.0036 | 3.44e-5 | 0.0043 ?
175 | 4.08e-4 | 0.0153 | 2.17e-5 | 0.0032 | 4.75e-5 | 0.0058
200 | 3.54e-4 | 0.0141 | 2.76e-4 | 0.0162 | 0.0003 | 0.0177 5

225 | 3.27e-4 | 0.0134 | 1.44e-5 | 0.0028 | 5.05e-5 | 0.0061
250 | 2.56e-4 | 0.0117 | 5.37e-5 | 0.0065 | 4.58e-5 | 0.0061
275 | 0.0019 | 0.0306 | 2.21e-4 | 0.0118 | 0.0003 | 0.0165 y . A -
300 | 2.81e-4 | 0.0126 | 2.51e-5 | 0.0041 | 2.93e-5 | 0.0048 = e
325 | 2.30e-4 | 0.0110 | 9.75e-6 | 0.0024 | 2.61e-5 | 0.0041
350 | 1.85e-4 | 0.0096 | 8.27e-6 | 0.0022 | 3.34e-5 | 0.0049 | gjoyre 10. The results of prediction on the test sample (Steps = 150,
375 | 2.03e4 | 00102 | 16led | 0.0124 | 0.0003 | 0.0166 | opiimizer = "RMSprop").GRU.

400 | 1.75e-4 | 0.0098 | 8.63e-6 | 0.0022 | 1.66e-5 | 0.0033

Price Predictions Price Predictions Traning Data

aih — Actual Open Price | e, —— Actual Open Price
=== Predicted Open Price (1 per step) . ——- Predicted Open Price

Price

50 Tn'fl_ - ':l ; -};I.'J a-‘:tl- E !;--

Figure 11. Forecast results on the test sample (Steps = 250, optimizer
Figure 8. The results of prediction on the test sample (Steps = 150, = "adam"). GRU.

optimizer = "SGD"). SimpleRNN.

281

Price Pradictions Traning Datz

a —— Amunl Open Pree
== - Predicted Open Pree

Figure 12. Forecast results on a sample of ten (Steps = 175, optimizer
= "RMSprop"). LSTM

Price Pradictions.

— Actunl Open Pree
I ==+ Ppemicted Opan Price {1 per stapk

Frice

L]] 106 150 200 =0 300
[

Figure 13. The results of prediction on the test sample (Steps = 150,
optimizer = "adam").LSTM.

Dense layer with the Relu activation function. Dropout
is used to solve the problem of retraining. Experimental
studies have shown that the best results are achieved
using the optimizer "adam". Error on a test set is MSE =
1.664e-05, MAE = 0.0033. This error makes it possible
to forecast the price dynamics.

REFERENCES

[1] Tacomin R.: Stock market prediction. In: 19th International
Conference on System Theory, Control and Computing (IC-
STCC), Cheile Gradistei, pp. 200-205. (2015), DOI: 10.1109/IC-
STCC.2015.7321293.

[2] Shai, Shalev-Shwartz, Shai, Ben-David: Understanding Machine
Learning: From Theory to Algorithms. Cambridge University
Press, 32 Avenue of the Americas, New York, NY 10013-2473,
USA, 416p. (2014)

[3] Schmidhuber J.: Deep Learning in Neural Networks: an
Overview. Neural Networks. Vol. 1. pp. 85-117. (2015.) DOI:
10.1016/j.neunet.2014.09.003

[4] Brockwell, Peter J., Davis, Richard A.: Introduction to Time
Series and Forecasting. Second Edition. Springer-Verlag New
York, Inc., 175 Fifth Avenue, New York, NY 10010, USA, 449
p. (2002)

[5] Sergii, K., Yurii, S., Tatyana, V., Natalia, A.: Feature Selection
for Time-Series Prediction in Case of Undetermined Estimation.
In: Samsonovich A., Klimov V., Rybina G. (eds.) Biologically
Inspired Cognitive Architectures (BICA) for Young Scientists,
Advances in Intelligent Systems and Computing, vol. 449, pp.
85-97. Springer, Cham (2016).

[6] Stock quotes, https://www.finam.ru/, last accessed 2019/03/29.

[7] Vargas, R., Ruiz, L.: Deep learning: previous and present appli-
cations. Journal of awareness, 2(Special 3), 11-20 (2018).

[8] Chen Y., Lin Z., Zhao X., Wang G., and Gu Y.: Deep Learning-
Based Classification of Hyperspectral Data. Selected Topics in
Applied Earth Observations and Remote Sensing. IEEE Journal
of. 7, 2094-2107(2014).

[9]1 Bao, W, Yue, J, Rao, Y.: A deep learning framework for finan-
cial time series using stacked autoencoders and long-short term
memory. PLoS One 12(7), 1-24 (2017).

[10] Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric
discriminatively, with application to face verification. In: Pro-
ceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR ’05), vol. 1, pp. 539-546.
IEEE, (2005).

[11] Manaswi, N.K.: Regression to MLP in Keras. In: Deep Learning
with Applications Using Python, pp. 68-89. Apress, Berkeley,
CARecurrent Neural Networks (2018).

[12] Vasyaeva T., Martynenko T., Khmilovyi S., Andrievskaya N.
(2019) Stock Prices Forecasting with LSTM Networks. In:
Kuznetsov S., Panov A. (eds) Artificial Intelligence. RCAI 2019.
Communications in Computer and Information Science, vol 1093.
Springer, Cham

[13] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua
Bengio. Gated feedback recurrent neural networks. arXiv preprint
arXiv:1502.02367, 2015

[14] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhut-
dinov, R.: Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929-1958. (2014).

[15] Google Colaboratory, https://colab.research.google.com/notebooks/
welcome.ipynb, last accessed 2019/02/11.

[16] Keras: The Python Deep Learning library, https://Keras.io/, last
accessed 2019/03/10.

IIporao3upoBanue JMHAMUKH H3MEHEHHS
[leH Ha aKIHH ¢ IOMOIIHI0 PEKYPPEHTHBIX
HEHPOHHBIX CeTeM.

Bacsesa T.A., Mapteinenko T.B.,
Xwmenesort C.B., AuapueBckas H.K.

B cTarse paccMOTpeHO IpUMEHEHUE PEKYPPEHTHBIX HEHpOH-
HBIX CeTel /ISl IPOTHO3UPOBAHHS [IEH aKI[Hil CeTH alTeK «36u6».
IIpeameTom nccrenoBaHus JaHHOWH paOOTHI ABISIOTCS METOMIBI
aHaym3a (poHoBbIX Oupk. IIokazaHO mHOMyyeHHE KOTHMPOBOK
aKkLui, onMcaH (opmaT mnojiyuyeHHOH HH(popmauuu. [laHHbIe
MPEJICTABIISIOT COOON MHOTOMEPHBI BPEMEHHO! Psiji, KOTOPHIiA
COIEPXKUT 5 KaHAJIOB: LIeHA OTKPBITUSA, MaKCUMaJIbHAs LIEHa, MU-
HHUMaJIbHasl 11€HA, LIeHa 3aKpbITHs1, 00beM TOpros. PaccMoTpeHo
(opmupoBanue oOyuyarorieil BHIOOPKH «CKOJB3SIIUM OKHOM» B
3aJa4ax MallMHHOTO OOyYeHHs NPUMEHHTEIPHO K MHOTOMep-
HBIM BpEMEHHBIM psiiaM. PekyppeHTHbIe HeipOHHBIE CETU TPYAHO
o0yuaTh M3-3a MpodJIeMs! ucue3aromero rpaguenTa. [lokasaHo
npumenenre GRU u LSTM certeii a/1s1 petiieHust AaHHOH po0Jie-
Mbl. [IpeasiokeHa apxuTeKTypa HeilpoHHO# cetu. Paspaborana
1 oOyueHa HefpOHHasi CeThb JUIsl NPOTHO3MPOBAHUsST OMPXKEBON
TOPIrOBJIY C UCTIOJIb30BAHUEM sA3bIKa IporpaMMupoBanus Python,
a takke Oubnmorekn Keras. ITpoBeieHbl SKCIEPHUMEHTHI 10
HACTPOIKe OCHOBHBIX IIAPAMETPOB.

Received 14.12.2019

282

