ИНЖЕНЕРНЫЙ ВЕСТНИК

Regeneral OFECH BRO "WITH etc. IE.). Surpress", 3a No. 4077-50806, 1999 2007-4998

Обзор методов обработки сигнала электроэнцефалограммы в интерфейсах мозг-компьютер

10, октябрь 2014 Сотников П. И.

УДК: 004.5

Россия, МГТУ им. Н.Э. Баумана sotnikoffp@gmail.com

Введение

Интерфейс мозг-компьютер (ИМК) (англ. *Brain-Computer Interface, BCI*) является системой коммуникации человека с машиной (например, с компьютером или протезом), основанной на непосредственном преобразовании намерений человека, отраженных в биопотенциалах мозга, в управляющие команды. Основное применение ИМК нашел в качестве инструмента для реабилитации пациентов с различными двигательными и неврологическими нарушениями, однако в настоящее время наблюдается тенденция к использованию ИМК и здоровыми людьми (управление когнитивным состоянием с помощью биологической обратной связи, игры и развлечения).

Как правило, в приложениях ИМК регистрация электрической активности мозга производится неинвазивным способом с помощью методов электроэнцефалографии (ЭЭГ).

В данной статье приводится обзор ряда распространенных методов обработки сигнала ЭЭГ в интерфейсах мозг-компьютер, основанных на анализе сенсомоторных ритмов (*sensorimotor rhythms - SMR*). В таких интерфейсах для управления внешним устройством, например, рукой робота или курсором на экране, пользователь мысленно представляет то или иное движение. В состоянии покоя сенсомоторные ритмы имеют высокую амплитуду (наблюдается *синхронизация* ритма), в то время как при активации соответствующих сенсорных или моторных участков коры, их интенсивность падает (наблюдается *десинхронизация* ритма) [1]. Главной задачей ИМК в данном случае является корректное распознавание состояний синхронизации и десинхронизации ритмов.

1. Принципы построения ИМК на основе анализа сенсомоторных ритмов

Любой ИМК реализует следующие стадии обработки нейрофизиологических данных [1,2]: оцифровка сигналов электрической активности мозга; предобработка (фильтрация от шумов, удаление артефактов); выделение характерных признаков; классификация полученных признаков. На завершающем этапе результаты классификации преобразуются в команду внешнему техническому устройству. Структурная схема ИМК приведена на рисунке 1.

Рис. 1. Архитектура ИМК

При записи ЭЭГ обычно используется система «10-20%» - стандартная система размещения электродов на поверхности головы, которая рекомендована Международной федерацией электроэнцефалографии и клинической нейрофизиологии [3]. Всего по данной схеме на поверхность головы накладывают 21 электрод (рис. 2).

Рис. 2. Схема расположения электродов по системе «10-20%»

Основным фактором, позволяющим определять по записи ЭЭГ тип движений, выполняемых испытуемым, является то, что за контроль разных групп мышц отвечают различные участки коры головного мозга. На рисунке 3 представлена карта «проекций» частей тела на постцентральную и прецентральную кору больших полушарий мозга [4].

Рис.3. Поперечный срез головного мозга человека: а) срез левого полушария через чувствительные центры (постцентральная кора); б) срез правого полушария через двигательные центры (прецентральная кора)

Таким образом, при выполнении или мысленном представлении движений различных частей тела, десинхронизация мю- и бета-ритмов [1] будет наблюдаться в тех отведениях ЭЭГ, которые расположены над соответствующими участками коры головного мозга.

2. Предобработка сигнала. Методы удаления артефактов

Детектирование по записи ЭЭГ состояний синхронизации и десинхронизации сенсомоторных ритмов осложняется тем, что сигнал, регистрируемый с электродов, содержит помимо собственно потенциалов, генерируемых мозгом, различного рода артефакты.

Артефакты по их происхождению можно разделить на две группы: физические и физиологические [3].

К физическим артефактам относятся, например, помехи от электрических полей, создаваемые устройствами передачи и эксплуатации промышленного электрического тока. Данного рода артефакты выглядят, как колебания синусоидальной формы частотой 50 Гц, накладывающиеся на текущую ЭЭГ (рис. 4).

Рис. 4. Пример записи ЭЭГ с наложенной помехой частотой 50 Гц

Физиологические артефакты связаны с проявлениями жизнедеятельности организма и могут иметь следующее происхождение: потенциалы, обусловленные активностью мышц (электромиограмма, ЭМГ); потенциалы, возникающие вследствие движения глаз (электроокулограмма, ЭОГ). На рисунке 5 приведен пример записи ЭЭГ с наложенной помехой, вызванной движением глаз.

Рис. 5. Пример записи ЭЭГ с наложенной помехой, вызванной движением глаз

При анализе ЭЭГ подавление артефактов осуществляют с помощью следующих методов.

a) Применение фильтров высоких и нижних частот (удаление помех от электрических полей).

- б) Перерасчет значений сигнала ЭЭГ относительного нового референтного потенциала (электрода). Метод позволяет проводить пространственную фильтрацию ЭЭГ сигнала.
- в) Методы, основанные на линейном разложении сигнала ЭЭГ на составляющие компоненты, выделении артефакта (например, ЭОГ) и восстановлении ЭЭГ без компоненты артефакта. К методам данного типа относятся анализ главных компонентов (АГК) и анализ независимых компонентов (АНК).

2.1. Фильтрация сигнала

Пусть исходный ЭЭГ сигнал X содержит данные, полученные по M отведениям (каналам). При этом в каждом отведении $m \in \{1, 2, ..., M\}$ сигнал представлен в виде совокупности дискретных отсчетов, взятых в моменты времени с номерами n = 0, 1, ..., N - 1, где N – общее число отсчетов. Тогда в векторной форме сигнал может быть представлен, как

$$\mathbf{X} = (\bar{x}(0), \dots, \bar{x}(n), \dots, \bar{x}(N-1)) = \begin{pmatrix} x_1(0) & \dots & x_1(N-1) \\ \vdots & x_m(n) & \vdots \\ x_M(0) & \dots & x_M(N-1) \end{pmatrix},$$
(1)

где $\bar{x}(n) = (x_1(n), ..., x_m(n), ..., x_M(n))^T$ – значения сигнала в момент времени с номером $n \in \{0, 1, ..., N - 1\}$; а $x_m(n)$ – значение *m*-ой компоненты сигнала в указанный момент времени, $m \in \{1, 2, ..., M\}$.

Целью фильтрации является усиление или ослабление определенных частотных составляющих сигнала. Для фильтрации сигнала, представленного в виде последовательности дискретных отсчетов, применяют дискретные фильтры, которые в общем случае можно описать разностным уравнением [5]:

$$y(n) = \sum_{i=0}^{P} b_i x(n-i) - \sum_{k=1}^{Q} a_k y(n-k), n \in \{0,1,\dots,N-1\},\$$

где

у(*n*) – отсчет выходного сигнала в текущий момент времени *n*;

x(n-i) – отсчеты входного сигнала в предыдущие моменты времени n-i, $i \in \{0, 1, ..., P\}$;

y(n-k) – отсчеты выходного сигнала в предыдущие моменты времени $n-k, k \in \{1, 2, ..., Q\};$

*b*_{*i*} – коэффициенты входного сигнала;

*а*_{*k*} – коэффициенты обратной связи;

Р – порядок входного сигнала;

Q – порядок обратной связи.

Главной характеристикой фильтра является его передаточная функция *H*(*z*), которая для дискретных систем определяется с помощью Z-преобразования следующим образом:

$$H(z) = \frac{y(z)}{x(z)} = \frac{\sum_{i=0}^{P} b_i z^{-i}}{1 + \sum_{k=1}^{Q} a_i z^{-k}}.$$

Здесь y(z), x(z) – Z-преобразования для сигналов y(n), x(n) соответственно; $z = e^{j2\pi f}$, где $f \in [0,1]$ – относительная частота сигнала (отношение частоты сигнала к частоте дискретизации).

Амплитудно-частотная характеристика (AЧХ) H(f) дискретного фильтра может быть получена как модуль комплексной передаточной функции H(z), а фазово-частотная характеристика (ФЧХ) $\Phi(f)$ – как аргумент:

$$H(f) = |H(z)| = \sqrt[2]{\Re^2[H(z)] + \Im^2[H(z)]};$$

$$\Phi(f) = Arg[H(z)] = \arctan\frac{\Im[H(z)]}{\Re[H(z)]}.$$

Здесь $\Re[H(z)]$ – действительная часть комплексного числа H(z); $\Im[H(z)]$ – мнимая часть.

Также при описании фильтров применяется понятие групповой задержки $\tau(f)$, которая рассчитывается как производная от ФЧХ

$$\tau(f) = -\frac{d}{df}\Phi(f).$$

Дискретный фильтр, использующий в качестве входа один или более своих выходов (Q>0), называется рекурсивным или фильтром с бесконечной импульсной характеристикой (англ. *Infinite Impulse Response, IIR*). Примерами *IIR*-фильтров являются фильтры Баттерворта, Чебышева, Бесселя, эллиптические фильтры [5,6].

Дискретный фильтр, не имеющий обратной связи (Q=0), называется трансверсальным или фильтром с конечной импульсной характеристикой (англ. *Finite Impulse Response, FIR*). Знаменатель передаточной функции H(z) такого фильтра равен единице. Важной особенностью *FIR*-фильтров является их линейная фазовая характеристика в полосе пропускания, что обеспечивает одинаковую групповую задержку на разных частотах ($\tau(f) = const$).

В связи с этим, использование *FIR*-фильтров бывает более предпочтительным в приложениях ИМК.

На рисунке 6 приведен пример фильтрации ЭЭГ с наложенной помехой от электрических полей.

Рис. 6. Пример фильтрации ЭЭГ сигнала: a) Сигнал с наложенной высокочастотной помехой; б) Сигнал после фильтрации в диапазоне частот 0,5 – 49 Гц

2.2. Общий усредненный монтаж

В литературе под термином *монтаж* понимают способ, согласно которому измеряются потенциалы ЭЭГ [7].

В электроэнцефалографах значения потенциалов электродов, расположенных на поверхности головы, всегда измеряются по отношению к некоторому другому потенциалу или потенциалам. При этом в качестве референтного, как правило, используется электрод, установленный на определенном удалении от мозга, например, на мочке уха, мастоидах или кончике носа. В идеале, потенциал референтного электрода не должен изменяться с течением времени. Однако из-за проводимости покровов головы все отведения являются в той или иной степени электрически активными, что, в свою очередь, вносит искажения в регистрируемый сигнал ЭЭГ.

Одним из наиболее простых подходов к решению данной проблемы является перерасчет значений ЭЭГ сигнала относительно общего усредненного референта [7,8]. Данный перерасчет производят по формуле:

$$\tilde{X}_{i} = X_{i} - \frac{1}{M} \sum_{i=1}^{M} X_{i} , \qquad (2)$$

где X_i – строки матрицы **X** (формула (1)).

В идеальном случае, если бы электроды были равномерно расположены на сфере, общим средним числом для \tilde{X}_i был бы нуль и переход, выполненный в соответствии с выражением (2), позволял бы восстановить точные значения потенциалов ЭЭГ.

На рисунке 7 показано изменение формы сигнала, представленного на рисунке 5, после перехода к общему усредненному монтажу.

Рис. 7. ЭЭГ сигнал после перерасчета значений относительно общего усредненного референта

2.3. Анализ главных компонентов

Одними из наиболее распространенных артефактов при записи ЭЭГ являются потенциалы ЭОГ (электроокулограммы), обусловленные изменением ориентации электрической оси глаза вследствие движения глазных яблок [3].

Отличительными признаками данного рода артефактов является их пространственное распределение. Максимальная амплитуда артефактов наблюдается в лобных отведениях и уменьшается по направлению к затылочным отведениям. Артефакты ЭОГ не связаны с текущей ритмикой на ЭЭГ и возникают независимо от ее изменений.

Для удаления из многоканального ЭЭГ сигнала артефактов, обусловленных непроизвольными движениями глаз испытуемого, широкого применяется анализ главных компонентов (англ. *Principal Component Analysis, PCA*).

Идея метода главных компонентов заключается в нахождении для исходных данных такого их ортогонального преобразования в новую систему координат, для которого выполняются следующие условия:

- выборочная дисперсия данных вдоль первой координаты максимальна;
- выборочная дисперсия данных вдоль k-ой координаты максимальна при условии ортогональности первым (k - 1) координатам.

В результате, направления базисных векторов будут выбраны так, что коэффициент ковариации между проекциями исходного набора данных на различные координатные оси будет равен нулю.

В векторной форме проекция многоканального ЭЭГ сигнала на главные компоненты может быть записана как

$$\mathbf{Y} = \mathbf{A}\mathbf{X},\tag{3}$$

где **X** – исходный многоканальный ЭЭГ сигнал размерности $M \times N$; **A** – матрица преобразования размерности $K \times M$ (также называемая матрицей нагрузок); **Y** - некоррелирован-

ный многомерный временной ряд (размерности $K \times N$), представляющий собой проекцию исходного сигнала на K главных компонентов.

Процедура построения матрицы А включает в себя следующие этапы [9]:

1) Для исходного многоканального ЭЭГ сигнала **X** производится расчет ковариационной матрицы $\mathbf{C} = \{c_{ij}\}_{M \times M}$. Элементы ковариационной матрицы определяются как:

$$c_{ij} = cov(X_i, X_j) = \frac{1}{N-1} (X_i - EX_i) (X_j - EX_j)^T, i, j = \{1, 2, \dots, M\},$$
(4)

где $X_i \, u \, X_j$ - строки матрицы **X**, а *E* – оператор математического ожидания.

- 2) Осуществляется поиск собственных значений λ_i и собственных векторов V_i ковариационной матрицы **С**.
- 3) Матрица преобразования **A** формируется из первых *K* собственных векторов V_i , расположенных в порядке убывания соответствующих собственных значений λ_i ковариационной матрицы **C**:

$$A = (V_1, V_2, \dots V_K)^T,$$

$$< K \le M.$$
(5)

где $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_K \geq 0, 0 < K \leq M$.

В задачах удаления артефактов из многоканального ЭЭГ сигнала в матрицу преобразования **A** включаются все собственные вектора V_i (то есть в выражении (5) K=M, где M – общее число каналов в записи ЭЭГ).

Главным методом дифференциации ЭОГ и ЭЭГ является регистрация ЭОГ с помощью дополнительных электродов, располагаемых в окружности глаз. ЭОГ вертикальных движений глаз регистрируется с помощью электродов, закрепленных выше и ниже глаза. ЭОГ горизонтальных движений фиксируется при горизонтальном расположении электродов.

При наличии записи ЭОГ процедура восстановления ЭЭГ сигнала без компоненты артефакта сводится к следующему.

- 1) Для каждой строки матрицы **Y** (формула (3)) рассчитывается коэффициент корреляции с каждым из каналов записи электроокулограммы.
- 2) Те строки, для которых коэффициент корреляции хотя бы с одним из каналов ЭОГ превышает по модулю некоторое пороговое значение, удаляются из матрицы Y. Соответствующие им строки матрицы A также удаляются. В результате получаются матрицы Y A размерностей (*K*-*d*)×*N*, (*K*-*d*)×*M* соответственно, где *d* общее число удаленных строк матрицы Y.
- 3) Восстановленный ЭЭГ сигнал $\tilde{\mathbf{X}}$ без компоненты артефакта рассчитывается как $\tilde{\mathbf{X}} = \tilde{\mathbf{A}}^T \tilde{\mathbf{Y}}.$

Здесь в силу ортогональности преобразования $\tilde{A}\tilde{A}^T = I$, где I – единичная матрица. Для многоканального ЭЭГ сигнала, представленного на рисунке 5, пример удаления артефактов, обусловленных движениями глаз испытуемого, приведен на рисунке 8.

На рисунке 8а показана электроокулограмма, регистрируемая одновременно с ЭЭГ.

Рис. 8. Пример удаления артефактов из ЭЭГ: а) запись электроокулограммы; б) проекция сигнала ЭЭГ на главные компоненты (жирным выделены составляющие сигнала, имеющие высокую степень корреляции с записью ЭОГ); в) восстановленный сигнал ЭЭГ без компоненты артефакта

3. Методы выделения характерных признаков в задачах распознавания типов воображаемых движений

Большая часть методов классификации предполагает сведение задачи классификации динамических данных к задаче классификации статических данных. Для этого необходимо выполнить переход от временного ряда, описывающего сигнал, к некоторому вектору признаков, характеризующему этот временной ряд. В операторной форме данный переход можно записать как

$$\Phi(\mathbf{X}) = V, V \in \mathbb{R}^L,$$

где $\Phi(\mathbf{X})$ – оператор, выполняющий отображение исходного ЭЭГ сигнала \mathbf{X} в пространство характерных признаков; V – вектор характерных признаков; L – размерность данного вектора.

В задачах распознавания типов воображаемых движений к наиболее распространенным методам выделения характерных признаков относятся следующие:

- статистический анализ сигнала [10];
- спектральный анализ сигнала [1,11];
- анализ сигнала в частотно-временной области [1,12];
- пространственная фильтрация многоканального ЭЭГ сигнала [14];
- авторегрессионная модель сигнала [15].

3.1. Дисперсия сигнала

Наиболее простым способом формирования вектора характерных признаков является оценка статистических показателей ЭЭГ сигнала, рассматриваемого в качестве непрерывной случайной величины.

К таким показателям относятся:

- среднее значение (математическое ожидание) амплитуды ЭЭГ сигнала;
- дисперсия значений ЭЭГ сигнала;
- коэффициент асимметрии, характеризующий асимметрию распределения значений
 ЭЭГ сигнала относительно их математического ожидания;
- коэффициент эксцесса, характеризующий остроту пика распределения значений ЭЭГ сигнала.

Статистические показатели рассчитываются отдельно для каждого из каналов, входящих в запись ЭЭГ. В приложениях ИМК наиболее информативным параметром является дисперсия значений сигнала

$$\sigma = \frac{1}{N} \sum_{n=0}^{N-1} (x(n) - \mu)^2,$$

где μ – математическое ожидание сигнала x(n).

Перед расчетом дисперсии сигнал ЭЭГ обычно подвергается фильтрации в диапазоне частот от 7 до 30 Гц, что соответствует мю- и бета-ритмам.

3.2. Спектральный анализ

Для определения состояний синхронизации и десинхронизации сенсомоторных ритмов в приложениях ИМК удобно перейти от представления сигнала ЭЭГ как функции времени, к представлению сигнала в частотной области. Данный переход осуществляется путем разложения сигнала на гармонические составляющие с помощью преобразования Фурье.

Для сигнала x(n), представленного в виде последовательности отсчетов, взятых с частотой дискретизации F_S в моменты времени с номерами n = 0, 1, ..., N - 1, дискретное преобразование Фурье определяется как [6]:

$$F(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-\frac{2\pi j}{N}kn}, k = 0, 1, \dots, N-1.$$

Здесь F(k) – комплексная амплитуда синусоидального сигнала с частотой $k \cdot \Delta f$, где $\Delta f = \frac{F_s}{N}$ – разрешение (шаг) по частоте; x(n) – измеренные значения сигнала в моменты времени с номерами n = 0, 1, ..., N - 1.

Стоит отметить, что поскольку сигнал x(n) является действительным ($\Im[x(n)] = 0$), амплитуды гармоник, симметричных относительно *N*/2, будут комплексносопряженными, то есть будет выполняться соотношение

$$F(k) = F^*(N-k), k \in [1; N/2 - 1].$$
(6)

В качестве меры, характеризующей зависимость мощности сигнала от частоты, используется спектральная плотность мощности P(k), которая вычисляется согласно следующей формуле

$$P(k) = \frac{|F(k)|^2}{N^2}, k = 0, 1, ..., N - 1.$$

Здесь коэффициент нормализации $\frac{1}{N^2}$ выбран, исходя из требования равенства суммарной спектральной плотности мощности среднеквадратичной амплитуде сигнала *x*(*n*):

$$\sum_{k=0}^{N-1} P(k) = \frac{1}{N} \sum_{n=0}^{N-1} |x(n)|^2 \, .$$

Пример графика спектральной плотности мощности для отдельного канала записи ЭЭГ приведен на рисунке 9. Как видно, в силу соотношения (6) график является симметричным относительно гармоники N/2, соответствующей частоте Найквиста ($F_S/2$).

В качестве характерных признаков сигнала x(n) в данном случае выступают значения суммарной спектральной плотности мощности в частотных диапазонах: 1-4 Гц (дельта-ритм); 4-8 Гц (тета-ритм); 8-14 Гц (альфа-ритм); 14-30 Гц (бета-ритм); 30-50 Гц (гамма-ритм). Таким образом, каждому каналу ЭЭГ сопоставляется пять признаков. Результирующий вектор характерных признаков V имеет размерность $L=5 \cdot M$, где M – общее число каналов в записи ЭЭГ.

Рис. 9. Спектральный анализ ЭЭГ сигнала: а) исходный сигнал; б) график спектральной плотности мощности.

3.3. Анализ сигнала в частотно-временной области. Непрерывное вейвлет-преобразование

В отличие от дискретного преобразования Фурье, рассматривающего сигнал, как стационарный, непрерывное вейвлет-преобразование (НВП) позволяет отследить динамику изменения гармонических составляющих сигнала с течением времени [16].

Непрерывное вейвлет-преобразование определяется как скалярное произведение исходного сигнала x(t) и дочерней вейвлет-функции $\Psi_{\tau,a}(t)$

$$W(\tau,a) = \langle x(t), \Psi_{\tau,a}(t) \rangle = \int_{-\infty}^{+\infty} x(t) \Psi_{\tau,a}^*(t) dt, \tau \in R, a \in R^+.$$

Здесь $W(\tau, a)$ – коэффициенты вейвлет-разложения; τ , a – параметры временного сдвига и масштаба соответственно; оператор * означает комплексное сопряжение.

Дочерние вейвлет-функции $\Psi_{\tau,a}(t)$ образуются путем операций сдвига и масштабирования материнской вейвлет-функции $\Psi(t)$ и связаны с ней соотношением

$$\Psi_{\tau,a}(t) = \frac{1}{\sqrt{a}} \Psi\left(\frac{t-\tau}{a}\right).$$

В качестве материнской вейвлет-функции был выбран комплексный вейвлет Морле, который представляет собой произведение комплексной синусоиды на гауссиан. Аналитическое выражение вейвлета Морле имеет вид

$$\Psi(t) = \frac{1}{\sqrt[4]{\sigma^2 \pi}} \cdot e^{-\frac{t^2}{2\sigma^2}} \cdot e^{j\omega_0 t},$$

где ω_0 – центральная частота материнского вейвлета; σ – стандартное отклонение огибающей материнского вейвлета.

На практике расчет коэффициентов вейвлет-разложения осуществляется в узлах некоторой дискретной сетки, заданной на плоскости (τ ,a). Пусть $\mathbf{W} = \{w_{ij}\}$ – матрица коэффициентов вейвлет-разложения для сигнала x(n), представленного в виде последовательности отсчетов, взятых с частотой дискретизации F_s в моменты времени с номерами n = 0, 1, ..., N - 1. Тогда элементы матрицы W определяются, исходя из выражения

$$w_{ij} = \sum_{n=0}^{N-1} x(n) \cdot \Psi^* \left(\frac{n\Delta t - \tau_i}{a_j} \right), i = 0, 1, \dots, N_\tau - 1; j = 0, 1, \dots, N_a - 1, \dots, N_a - 1, j = 0, 1, \dots, N_a - 1,$$

где x(n) – измеренное значение сигнала в момент времени с номером n; τ_i и a_j – значения временного сдвига и масштаба в узле сетки с номером (i,j); N_{τ} – разрешение матрицы W по времени; N_a – разрешение матрицы W по масштабу; Δt – интервал дискретизации $(\Delta t = \frac{1}{F_c})$.

Значения временного сдвига τ_i обычно определяются, как $\tau_i = i \cdot \Delta \tau$. Величина шага $\Delta \tau$ по оси τ при этом выбирается равной $\Delta \tau = \Delta t \frac{N}{N_{\tau}}$.

Учитывая обратно пропорциональную связь между значением масштаба *a* и соответствующей частотой, изменение шага сетки вдоль оси *a* выбрано гиперболическим. Значения исследуемых масштабов рассчитываются по формуле

$$a_j = \frac{\omega_0}{2\pi f_j}.$$

Здесь ω_0 – центральная частота материнского вейвлета; $f_j = (j + 1)\Delta f$ - значения центральных частот дочерних вейвлетов в узлах сетки с индексами $j = 0, 1, ..., N_a - 1$; Δf – шаг по частоте (в Гц), который определяется исходя из соотношения $f_{N_a-1} = F_S/2$, где $F_S/2$ – частота Найквиста.

Для оценки энергии сигнала x(n) используют матрицу квадратов коэффициентов вейвлет-разложения ($\mathbf{E} = \{ |w_{ij}|^2 \}$). Каждый столбец такой матрицы отражает распределение энергии сигнала по частотам в фиксированный момент времени. Каждая строка отражает распределение энергии сигнала на фиксированной частоте во времени.

На рисунке 106 показан пример визуального представления матрицы квадратов коэффициентов вейвлет-разложения, рассчитанной для одного из каналов ЭЭГ.

Рис. 10. Вейвлет-преобразование сигнала ЭЭГ: а) исходный сигнал; б) вейвлетограмма.

Вектор характерных признаков в данном случае включает в себя средние значения энергии сигнала для каждого из ЭЭГ каналов в заранее заданных частотных диапазонах (п. 3.2). Таким образом, вектор характерных признаков V так же имеет размерность $L=5 \cdot M$, где M – общее число каналов в записи ЭЭГ.

3.4. Модель авторегрессии

Модель авторегрессии основывается на аппроксимации временного ряда некоторой функцией, текущее значение которой определяется, как линейная комбинация значений временного ряда в предыдущие моменты времени [17].

Аналитические выражение модели авторегрессии имеет вид

$$y(n) = \sum_{k=1}^{p} a_k x(n-k).$$

Здесь P – порядок модели; a_k – коэффициенты авторегрессии, $a_k \in R$.

Ошибка аппроксимации текущего значения временного ряда x(n) при этом составляет величину:

$$\varepsilon_n = y(n) - x(n) = \sum_{k=0}^{P} a_k x(n-k), a_0 = -1.$$

Задача построения модели авторегрессии обычно сводится к нахождению таких значений коэффициентов *a_k*, при которых сумма квадратов ошибок будет минимальной (метод наименьших квадратов):

$$\sum_{n=0}^{N-1} \varepsilon_n^2(a) \to \min_a. \tag{7}$$

Здесь $a = (a_1, a_2, ..., a_P)^T$ обозначает вектор коэффициентов авторегрессии, $a \in R^P$.

В общем случае, решение задачи (7) осуществляется численными методами оптимизации. При этом для оптимального вектора *а* значения ошибки аппроксимации ε_n будут представлять собой «белый» шум с нулевым средним.

Также для оценки параметров модели авторегрессии широко используется ряд специальных методов, таких как метод Юла-Уокера, метод Бурга [17] и др.

С учетом того, что значения сигнала ЭЭГ в смежных отведениях являются сильно коррелированными, для оценки характерных признаков сигнала целесообразно использовать векторную модель авторегрессии. Особенность данной модели заключается в том, что в ней текущие значения временного ряда зависят, как от предыдущих значений этого же ряда, так и предыдущих значений других временных рядов, представленных в записи.

Для многоканального сигнала $\bar{x}(n) = (x_1(n), x_2(n), ..., x_M(n))^T$ векторную модель авторегрессии в аналитическом виде можно записать как [18]:

$$\sum_{k=0}^{P} A_k \bar{x}(n-k) = E_n , n = 0, 1, ..., N-1,$$

где P – порядок модели; $A_0, A_1, ..., A_p$ – квадратные матрицы коэффициентов авторегрессии размерности $M \times M$, $A_0 = -I$; $E_n = (\varepsilon_{n1}, \varepsilon_{n2}, ..., \varepsilon_{nM})^T$ – вектор ошибок аппроксимации.

Вектор характерных признаков ЭЭГ сигнала в данном случае включает в себя все матрицы $A_k, k = 1, 2, ... P$. Размерность вектора характерных признаков при этом составляет $L = P \cdot M \cdot M = P \cdot M^2$.

Стоит отметить, что в задачах классификации увеличение числа признаков часто приводит к проблемам мультиколлинеарности и усреднению расстояний между векторами признаков, что, в свою очередь, негативно влияет на точность классификации.

Учитывая данный факт, для сокращения числа характерных признаков, формируемых на основе векторной модели авторегрессии, следует отбирать только наиболее информативные каналы в записи ЭЭГ (уменьшать значение M), или использовать низкий порядок модели (P=1,2).

3.5. Общий пространственный фильтр

Общий пространственный фильтр (англ. *Common Spatial Pattern Filter, CSP*) реализует метод декомпозиции многоканального ЭЭГ сигнала, основанный на обучении по прецедентам [14].

При разработке пространственного фильтра предполагается, что каждая из записей ЭЭГ относится к одному из двух классов с метками $c \in \{1,2\}$. Целью фильтрации является разложение исходного сигнала **X** на такие составляющие, для которых выполняются следующие условия [14,19]:

- первые k компонент разложения имеют максимальную дисперсию, если сигнал X принадлежит к классу с меткой «1», и минимальную дисперсию, если сигнал X принадлежит классу с меткой «2»;
- последние k компонент разложения имеют максимальную дисперсию, если сигнал Х принадлежит к классу с меткой «2», и минимальную дисперсию, если сигнал Х принадлежит классу с меткой «1».

В аналитической форме пространственный фильтр можно описать выражением

$$\mathbf{X}_{CSP} = W^T \mathbf{X} \, .$$

Здесь **X** – исходный многоканальный ЭЭГ сигнал размерности $M \times N$; **X**_{CSP} – компоненты разложения сигнала **X** (матрица размерности $M \times N$); W – матрица декомпозиции размерности $M \times M$.

Расчет элементов матрицы декомпозиции И производится в несколько этапов.

В начале для всех записей ЭЭГ, принадлежащих классу с меткой «1», вычисляется усредненная ковариационная матрица

$$C_1 = \frac{1}{N_1} \sum_{l=1}^{N_1} C_l \, .$$

Здесь N_1 – общее число записей ЭЭГ, относящихся к классу «1»; C_l - ковариационная матрица для сигнала X_l , элементы которой рассчитываются согласно выражению (4).

Аналогично для всех записей ЭЭГ, принадлежащих классу с меткой «2», определяется усредненная ковариационная матрица

$$C_2 = \frac{1}{N_2} \sum_{l=1}^{N_2} C_l$$
 ,

где N_2 – общее число записей ЭЭГ, относящихся к классу «2».

Матрица декомпозиции W находится в результате одновременной диагонализации матриц C_1 , C_2 и удовлетворяет соотношениям

$$W^{T}C_{1}W = \Lambda_{1},$$

$$W^{T}C_{2}W = \Lambda_{2},$$

$$\Lambda_{1} + \Lambda_{2} = I,$$
(8)

где Λ_1 , Λ_2 – диагональные матрицы, элементы которых представляют собой собственные значения матриц C_1 , C_2 соответственно; I – единичная матрица.

Одновременная диагонализация матриц осуществляется в соответствии с приведенным ниже алгоритмом [9].

- 1) Рассчитывается суммарная ковариационная матрица $C_{\Sigma} = C_1 + C_2$.
- 2) Вычисляются собственные значения (Λ) и собственные вектора (U) матрицы C_{Σ} : $C_{\Sigma}U = U\Lambda$.
- 3) Рассчитывается матрица декоррелирующего преобразования *P* (англ. *whitening transformation matrix*): $P = \Lambda^{-1/2} U^T$.
- 4) С помощью декоррелирующего преобразования матрица С₁ приводится к виду

$$P \cdot C_1 \cdot P^T = K. \tag{9}$$

Здесь матрица К в общем случае не является диагональной.

5) Выполняется процедура диагонализации матрицы К:

$$K = U_k^T \cdot \Lambda_k \cdot U_k. (10) \tag{10}$$

Здесь Λ_k – диагональная матрица собственных значений; U_k – матрица собственных векторов, упорядоченных в порядке убывания соответствующих им собственных значений.

6) С учетом (9), (10) итоговая матрица декомпозиции *W*, удовлетворяющая соотношению (8), рассчитывается как

$$W = P^T U_k.$$

Поскольку столбцы матрицы U_k были упорядочены в порядке убывания соответствующих им собственных значений матрицы K, максимальные значения дисперсии для сигнала $\mathbf{X}_{CSP} = W^T \mathbf{X}$ будут наблюдаться в первых k каналах и остальные каналы можно исключить из рассмотрения без потери информативности. В работах, посвященных ИМК, обычно используют значение k = 3 [19].

Таким образом, вектор характерных признаков формируется из значений дисперсии в первых трех каналах полученного сигнала **X**_{CSP}.

Следует отметить, что данный метод может быть расширен на число классов, большее двух. Для этого задача разбивается на несколько бинарных подзадач, в которых сравнение производится по схеме «каждый с каждым» или «один со всеми».

Например, при использовании стратегии сравнения «один со всеми», в каждой из подзадач метка «1» присваивается всем записям ЭЭГ, принадлежащим к рассматриваемому в текущий момент классу, а метка «2» - всем записям ЭЭГ, принадлежащим к остальным классам.

Результирующей вектор характерных признаков V включает в себя значения дисперсии в первых трех каналах всех сигналов X_{CSP}^i , полученных при решении бинарных подзадач с номерами i = 1, 2, ..., Q, где Q – общее число классов.

Для повышения точности классификации совместно с пространственным фильтром используют частотные фильтры. В силу линейности операций пространственной и частотной фильтрации порядок применения фильтров не имеет значения.

4. Построение классификатора

Пусть в результате регистрации ЭЭГ получено множество записей, каждая из которых принадлежит одному из K классов. Задачей построения классификатора является нахождение на основе известного множества записей такого оператора $F(\mathbf{X})$, который любому ЭЭГ сигналу \mathbf{X} будет сопоставлять соответствующий ему номер класса k = 1, 2, ..., K:

$$F(\mathbf{X}) = k, k \in \{1, 2, \dots, K\}$$

При переходе от многомерного временного ряда X к вектору признаков V, характеризующих этот ряд, задачу классификации можно переписать в виде

$$\begin{cases} \Phi(\mathbf{X}) = V, V \in \mathbb{R}^L, \\ f(V) = k, k \in \{1, 2, \dots, K\}. \end{cases}$$

На этапе классификации данных с целью распознавания типа мыслительной деятельности применяют следующий математический аппарат.

- а) Байесовский классификатор (англ. Bayesian classifier). Метод основан на применении теоремы Байеса с дополнительными предположениями о статистической независимости признаков, описывающих классифицируемые объекты. При этом объект относится к тому классу, для которого рассчитанная апостериорная вероятность принадлежности является наибольшей.
- б) Линейный дискриминант Фишера (англ. Fisher's linear discriminant). Метод позволяет найти такую линейную комбинацию характерных признаков, для которой расстояние между классами будет максимальным. В качестве меры расстояния при этом используется отношение межклассовой дисперсии к внутриклассовой. Метод является одним из наиболее эффективных линейных методов классификации, применяемых в интерфейсе мозг-компьютер, и требует небольшое число обучающих выборок для получения достоверного вывода классификатора [13,19,20].
- в) Метод опорных векторов (англ. Support vector machine). Пусть каждая точка в пространстве признаков принадлежит только одному из двух классов. Метод опорных векторов выполняет в пространстве признаков поиск такой разделяющей гиперплоскости, чтобы расстояние между двумя ближайшими точками, лежащими по разные стороны гиперплоскости, было максимальным [21].
- г) Метод k ближайших соседей (англ. k-nearest neighbor algorithm). В данном методе решение о принадлежности объекта к тому или другому классу принимается после определения k ближайших соседей этого объекта [9]. Соседи берутся из множества элементов, классы которых уже известны. Новому объекту присваивается метка того класса, который является наиболее распространенным среди соседей.
- д) Искусственные нейронные сети (англ. Artificial neural network). Классификатор на основе искусственных нейронных сетей позволяет в приложениях ИМК адаптивно настраиваться на индивидуальные особенности конкретного испытуемого. Как правило, в работах используются типы нейронных сетей, предполагающие обучение по прецедентам (обучение с учителем). К одному из таких типов относится многослойный персептрон [21].

Заключение

В работе приведена общая структура интерфейсов мозг-компьютер, основанных на распознавании типов движений, мысленно представляемых испытуемым. Представлен обзор основных методов, используемых на каждой из стадий обработки сигнала ЭЭГ. Основное внимание уделено методам выделения характерных признаков сигнала ЭЭГ.

В результате проведенного исследования установлено, что, несмотря на наличие широкого спектра подходов к количественному анализу ЭЭГ в приложениях ИМК, они не обеспечивают требуемой точности классификации, необходимой для создания систем, удобных для использования в повседневной жизни. Таким образом, задача разработки более эффективных методов анализа ЭЭГ остается актуальной.

Список литературы

- 1. Dornhege G, Hinterberger T, del R.Millan J, editors. Toward brain-computer interfacing. A Bradford book, 2007. 520 pp.
- 2. Трофимов А.Г., Скругин В.И., "Системы нейрокомпьютерного интерфейса. Обзор," // Информационные технологии, № 2, 2011. С. 2-11.
- 3. Зенков Л.Р. Клиническая электроэнцефалография (с элементами эпилептологии). Руководство для врачей. 3-е изд. Москва: МЕДпрессинформ, 2004. 368 с.
- 4. Лурия А.Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга. 3-е изд. Москва: Академический проект, 2000. 512 с.
- 5. Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов. Москва: Издательство «Мир», 1978.
- 6. Кестер У. Проектирование систем цифровой и смешанной обработки сигналов. Москва: Техносфера, 2010. 328 с.
- 7. Кропотов Ю.Д. Количественная ЭЭГ, когнитивные вызванные потенциалы мозга человека и нейротерапия. Донецк: Издатель Заславский А.Ю., 2010. 512 с.
- Ludwig K.A., Miriani R.M., and Langhals N.B., "Using a Common Average Reference to Improve Cortical Neuron Recordings From Microelectrode Arrays," // Journal of Neurophysiology, Vol. 101, 2009. pp. 1679–1689.
- 9. Fukunaga K. Introduction to statistical pattern recognition. 2nd ed. San Diego: ACADEMIC PRESS, 1990. 614 pp.
- Kalcher J., Pfurtscheller G., "Discrimination between phase-locked and non-phase-locked event-related EEG activity," // Electroencephalography and Clinical Neurophysiology, Vol. 94(5), 1995. pp. 381–384.
- Pfurtscheller G., F.H. Lopes da S., "Event-related EEG/MEG synchronization and desynchronization: basic principles," // Clinical Neurophysiology, No. 110, 1999. pp. 1842-1857.
- 12. Седов А.С., Раева С.Н., "Применение вейвлет-анализа для исследования импульсной активности нейронов головного мозга человека," // Нейроинформатика, Т. 2, №1, 2007. С. 77-92.
- 13. Xu B.G., Song A.G., "Pattern recognition of motor imagery EEG using wavelet transform,"// J. Biomedical Science and Engineering, Vol. 1, 2008. pp. 64-67.
- Blankertz B., Tomioka R., and Lemm S., "Optimizing Spatial Filters for Robust EEG Single-Trial Analysis," // IEEE SIGNAL PROCESSING MAGAZINE, Vol. XX, 2008. pp. 581-607.

- Brunner C., Billinger M., and Vidaurre C., "A comparison of univariate, vector, bilinear autoregressive, and band power features for brain–computer interfaces," // Med Biol Eng Comput, Vol. 49, 2011. pp. 1337–1346.
- 16. Chui C.K. An Introduction to Wavelets. Vol 1. San Diego: Academic Press, 1992.
- Lütkepohl H. New Introduction to Multiple Time Series Analysis. Berlin: Springer, 2005.
 764 pp.
- 18. Драница Ю.П., Драница А.Ю., Алексеевская О.В., "Быстрый алгоритм построения нестационарной векторной линейной авторегрессии," // Дифференциальные уравнения и процессы управления, №4, 2011. С. 137-177.
- Zhang D., Wang Y., and Gao X., "An Algorithm for Idle-State Detection in Motor-Imagery-Based Brain-Computer Interface," // Computational Intelligence and Neuroscience, Vol. 2007, 2007. 9 pp.
- 20. Wang Y., Zhang Z., and Li Y., "BCI Competition 2003 Data Set IV: An Algorithm Based on CSSD and FDA for Classifying Single-Trial EEG," // IEEE TRANSACTIONS ON BI-OMEDICAL ENGINEERING, Vol. 51, No. 6, 2004. pp. 1081-1086.
- 21. Хайкин С. Нейронные сети: полный курс. 2-е изд. Москва: Издательский дом "Вильямс", 2006. 1104 с.