TAB LE II
V
OLTAGE PROFILE BEFORE AND AFTER DG
Voltage before DG Voltage after DG
Bus |V | angle
◦
|V | angle
◦
1 1.000 0.000 1.000 0.000
2 1.000 -0.001 1.000 -0.001
3 1.000 -0.002 1.000 -0.001
4 1.000 -0.006 1.000 -0.003
5 0.999 -0.019 1.000 -0.004
6 0.990 0.049 0.997 0.038
7 0.981 0.121 0.994 0.081
8 0.979 0.138 0.994 0.092
9 0.977 0.147 0.993 0.097
10 0.972 0.232 0.988 0.179
11 0.971 0.249 0.987 0.195
12 0.968 0.302 0.984 0.246
13 0.965 0.348 0.981 0.291
14 0.962 0.394 0.978 0.336
15 0.959 0.440 0.976 0.380
16 0.959 0.449 0.975 0.389
17 0.958 0.463 0.974 0.402
18 0.958 0.463 0.974 0.402
19 0.958 0.472 0.974 0.411
20 0.957 0.477 0.973 0.416
21 0.957 0.486 0.973 0.425
22 0.957 0.486 0.973 0.425
23 0.957 0.487 0.973 0.426
24 0.957 0.490 0.973 0.429
25 0.956 0.493 0.973 0.431
26 0.956 0.495 0.973 0.433
27 0.956 0.495 0.973 0.433
28 1.000 -0.003 1.000 -0.001
29 1.000 -0.005 1.000 -0.004
30 1.000 -0.003 1.000 -0.002
31 1.000 -0.003 1.000 -0.001
32 1.000 -0.001 1.000 0.000
33 0.999 0.003 0.999 0.005
34 0.999 0.009 0.999 0.011
35 0.999 0.010 0.999 0.012
36 1.000 -0.003 1.000 -0.002
37 1.000 -0.009 1.000 -0.008
38 1.000 -0.012 1.000 -0.010
39 1.000 -0.013 1.000 -0.011
40 1.000 -0.013 1.000 -0.011
41 0.999 -0.024 0.999 -0.022
42 0.999 -0.028 0.999 -0.027
43 0.999 -0.029 0.999 -0.027
44 0.999 -0.029 0.999 -0.028
45 0.998 -0.031 0.998 -0.029
46 0.998 -0.031 0.998 -0.029
47 1.000 -0.008 1.000 -0.004
48 0.999 -0.053 0.999 -0.049
49 0.995 -0.192 0.995 -0.188
50 0.994 -0.211 0.994 -0.208
51 0.979 0.139 0.994 0.092
52 0.979 0.139 0.994 0.092
53 0.975 0.169 0.994 0.106
54 0.971 0.195 0.994 0.116
55 0.967 0.230 0.994 0.130
56 0.963 0.265 0.994 0.143
57 0.940 0.662 0.997 0.194
58 0.929 0.864 0.998 0.219
59 0.925 0.945 0.998 0.228
60 0.920 1.050 0.999 0.233
61 0.912 1.119 1.001 0.253
62 0.912 1.122 1.000 0.256
63 0.912 1.125 1.000 0.259
64 0.910 1.143 0.998 0.273
65 0.909 1.149 0.998 0.278
66 0.971 0.250 0.987 0.196
67 0.971 0.250 0.987 0.196
68 0.968 0.308 0.984 0.252
69 0.968 0.308 0.984 0.252
system can reduce the total line power losses. The proposed
algorithm was tested on 69−bus distribution system to solve
the DG mixed integer nonlinear problem with both equality
and inequality constraints imposed on the system. The hybrid
PSO significantly minimized the distribution network real
power losses and converged to the same bus for the DG to
be installed in every single run.
R
EFERENCES
[1] R. E. Brown. Modeling the reliability impact of distributed generation.
2002 IEEE Power Engineering Society Summer Meeting, Vol. 1:442 –
446, 2002.
[2] Installation, operation, and maintenance costs for distributed generation
technologies. EPRI Technical Report, Date Published: 2/3/2003.
[3] N. Hatziargyriou, M. Donnelly, S. Papathanassiou, J. A. Pecas Lopes,
M. Takasaki, H. Chao, J. Usaola, R. Lasseter, A. Efthymiadis, K. Karoui,
and S. Arabi. Cigre technical brochure on modeling new forms of
generation and storage. CIGRE, TF 38.01.10, November 2000.
[4] P. Chiradeja. Advanced voltage regulation method of power distribution
systems interconnected with dispersed storage and generation systems
(revised). IEEE PES Transmission and Distribution Conference and
Exhibition: Asia and Pacific, pages 1–5, 15-18 Aug. 2005.
[5] S. Rahman. Green power: What is it and where can we find it? IEEE
Power& Energy Magazine, pages 30–37, January/February 2003.
[6] M. A. Kashem and G. Ledwich. Distributed generation as voltage
support for single wire earth return systems. IEEE Transactions on
Power Delivery, Vol. 19(3):1002 – 1011, July 2004.
[7] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. Dhae-
seleer. Distributed generation: definition, benefits and issues. Energy
Policy, Vol. 33(6):787–798, April 2005.
[8] P. P. Barker and R.W. De Mello. Determining the impact of distributed
generation on power systems: Part 1 - radial distribution systems. IEEE
Power Engineering Society Summer Meeting, Vol. 3(1):1645 – 1656,
16-20 July 2000.
[9] M. M. Begovi
´
c, A. Pregelj, A. Rohatgi, and D. Novosel. Impact of
renewable distributed generation on power systems. Proceedings of the
34th Hawaii International Conference on System Sciences, pages 654 –
663, Jan 3-6 2001.
[10] T. K. A. Rahman, S. R. A. Rahim, and I. Musirin. Optimal allocation
and sizing of embedded generators. Proceedings of Power and Energy
Conference. PECon 2004, pages 288 – 294, 29-30 Nov. 2004.
[11] Francisco Jurado and Antonio Cano. Optimal placement of biomass
fuelled gas turbines for reduced losses. Energy Conversion and Man-
agement, 47(15-16):2673–2681, September 2006.
[12] T. Griffin, K. Tomsovic, D. Secrest, and A. Law. Placement of dispersed
generations systems for reduced losses. Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences, page 9, Jan 2000.
[13] M. Gandomkar, M. Vaklian, and M Ehsan. A genetic-based tabu search
algorithm for optimal dg allocation in distribution networks. Electric
Power Compoenents and Systems, Vol. 33(12):1351–1362, December
2005.
[14] H. Lee Willis. Analytical methods and rules of thumb for modeling
dg-distribution interaction. IEEE Power Engineering Society Summer
Meeting, Vol.3:1643 – 1644, 16-20 July 2000.
[15] T. Niknam, A.M. Ranjbar, and A.R. Shirani. Impact of distributed
generation on volt/var control in distribution networks. 2003 IEEE
Bologna Power Tech Conference Proceedings, Vol. 3:7, 23-26 June 2003.
[16] J. Kennedy and R. Eberhart. Particle swarm optimization. IEEE
International Conference on Neural Networks, Vol. 4:1942–1948, 1995.
[17] R. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pages 39–43, 1995.
[18] M. E. Baran and F. F. Wu. Optimal capacitor placement on radial
distribution systems. IEEE Transactions on Power Delivery,Vol.
4(1):725–732, January 1989.
1293
Authorized licensed use limited to: Dalhousie University. Downloaded on December 24, 2009 at 23:00 from IEEE Xplore. Restrictions apply.
View publication stats