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Abstract.
Stratified sampling is a technique that consists in separating the elements of a population into non-

overlapping groups, called strata. This paper describes a new algorithm to solve the one-dimensional
case, which reduces the stratification problem to just determining strata boundaries. Assuming that
the number L of strata and the total sample size n are predetermined, we obtain the strata boundaries
by taking into consideration an objective function associated with the variance. In order to solve this
problem, we have implemented an algorithm based on the ILS metaheuristic. Computational results
obtained from a real data set are presented and discussed.

1 Introduction

Stratification is a widely used sample survey technique (Cochran, 1977). The sampling frame
is divided into strata and independent samples are drawn from each stratum. One reason to use
stratification is that the survey designer forms homogenised strata, which are achieved if impor-
tant study variables vary less within strata than within the unstratified population. According to
Scheaffer (1990) the main reasons for using stratified random sampling are:

• Stratification may produce a smaller bound on the error of estimation than would be pro-
duced by a simple random sample. This result is particulary true if measurements within strata
are homogeneus.
• The cost per observation in the survey may be reduced by stratification of the population

elements into convenient groupings.
• Estimates of population parameters may be desired for subgroups of the population that

identify the strata.

The determination of stratum boundaries is one of the main problems of stratified sampling.
Some rules and methods to adress this problem have been written by several authors such as
Ekman (1959), Dalenius and Hodges (1959), Lavallée and Hidiroglou (1988), Hedlin (1998,
2000), Kozak (2004); Kozak and M.R. (2006), Gunning and Horgan (2004).

Strata boundaries are determined by taking into account a stratification variable X , whose
values are known for all population units. The process aims to find homogeneous strata in
such a way to minimize the sum of the variances of a study variable Y , correlated with X , or
minimize the variance of the variable X itself (Hedlin, 2000), within the strata. The variance
calculus depends on the sample allocation scheme taken in consideration, that is, on the number



or proportion of sample units that must be allocated within each stratum. In this work, we will
consider the stratification problem with the Neyman optimal allocation (Cochran, 1977), that
targets to provide the more homogeneous strata.

Some previous works have been proposed to solve this combinatorial problem with Neyman
allocation by using non-search based approaches. Also, those proposals focuse on just to find
homogeneous strata, expecting to minimize the sum of the variances within the strata as a
consequence. As an alternative, we propose in this work an ILS (Iterative Local Search) based
metaheuristic algorithm that both performs a guided random exploration of the search space and
focuses its search directly on the sum of variances itself, in order to provide good (non-exact)
solutions to the problem.

This paper is organized as follows: In section 2, the stratification problem is introduced. In
section 3, we give a brief description of the ILS metaheuristic and apply it for solving the strat-
ification problem. Finally, the last section presents and compares some computational results
obtained by applying the ILS algorithm and three algorithms from literature, considering a real
and an artificial data set.

2 Stratified Random Sampling

In stratified sampling the population of N units is partitioned into strata of N1, N2, ..., NL

units, respectively (Cochran, 1977; Sarndal, 1992). These subpopulations are nonoverlapping.
Together they comprise the whole population, so that

N1 +N2 + ...+Nh + ...+NL = N (1)

To obtain the full benefit from stratification, the values of Nh must be known. When the
strata have been determined, a sample n is selected by some design, determining a sample of
size nh within each stratum h, so that

n1 + n2 + ...+ nh + ...+ nL = n (2)

Because the selections in different strata are made independently, the variances for the indivi-
dual strata can be added to obtain variances for the whole population. Since only the within-
stratum variances enter into the variances, the principle of stratification is to partition the popu-
lation in such a way that the units within a stratum are as similar as possible.

Stratification is a common technique that may produce a gain in precision in the estimates
of the characteristics of the whole population. It may be possible to divide a heterogeneous
population into subpopulations, each one internally homogeneous.

2.1 Stratification Problem

In this problem, a sample of size n is taken from the population U = {1, 2, ..., N}, conside-
ring a study variable Y related to the desired estimates in the survey. The population is par-
titioned into a given number L of strata, namely A1, A2, ..., AL. Strata are built taking into
account a size variable X , which is correlated with the study variable Y and whose observa-
tions are known for all the population elements.

Let YU = y1, y2, ..., yN be a population vector associated to the study of variable Y and
XU = x1, x2, ..., xN be the population vector generated by the corresponding observations of
the stratification variable X , where x1 ≤ x2 ≤ ... ≤ xN . Strata are determined by the cutting
points (boundaries) b1 < b2 < ... < bh < ... < bL−1, in such a way that



A1 = {i : xi ≤ b1}

Ah = {i : bh−1 < xi ≤ bh} h = 2, 3, ..., L− 1

AL = {i : bL−1 < xi}

Once given the boundaries of strata, a simple random sample of size nh is taken of each
stratum. Such boundaries should be defined in order to minimize the variance.

v(Ŷ ) =
L∑

h=1

N2
h

S2
hy

nh

(1− nh

Nh

), (3)

where Nh and nh are respectively the number of frame units and the sample size in stratum
h. And S2

hy is the study variable variance in stratum h:

S2
hy =

Nh∑
i=1

(yhi − Y h)
2

Nh − 1
(4)

Y h and yhi are respectively the variable mean in stratum h and the value of a variable of
interest y for the unit i in the stratum h .

When the question is to allocate the sample size among strata, there are several alternative
methods such as equal, proportional and Neyman allocation (Cochran, 1977). The equal al-
location method is the simplest one, where all the stratum sample sizes are the same. With
the proportional allocation method, the sample size in each stratum is proportional to the size
of the stratum. These two methods are efficient and suitable if the variances within the strata
are similar Cyert (1962). On the other hand, if the stratum variances differ substantially, as in,
for example, highly skewed populations, the Neyman allocation method should be used. This
method is based on the principle of sampling fewer elements from homogeneous strata and
more elements from strata with high internal variability.

In this work, we considered the Neyman’s Allocation to allocate the total sample size n
among the L strata. Assuming that sample costs are to be equal for all strata, the stratum
sampling sizes using Neyman’s allocation scheme are given by (Cochran, 1977):

nh =
n.Nh.Syh∑L
k=1Nk.Syk

(5)

Alternatively, we can also consider the minimization of the coefficient of variation (cv):

cv(Ŷ ) = 100.

√
v(Ŷ )

Y
(6)

where Y =
∑L

h=1

∑Nh

i=1 yhi

We also work under the assumptions that the values of the stratification variable are known
and that, for simplicity, those values are equal to the study variable ones. Many authors draw
on this assumption, among others Dalenius and Hodges (1959),Ekman (1959),Lavallée and
Hidiroglou (1988), Hedlin (2000) and Mehta (n.d.).



We emphasize that finding a global minimum for (3) or (6) is a hard task, either analytically
or by intensive computing methods, because S2

hy is a nonlinear function of b1 < b2 < ... < bL−1

and the number of different choices for these values may be very high. In section 3 we discuss
this issue using some combinatorial arguments.

Therefore, several methods which yield a local minimum have been suggested. A well-
known method of strata definition was proposed in Dalenius and Hodges (1959). It consists of
approximating the distribution of the variable of stratification X in the population, by using a
histogram with various classes. Its adoption therefore implies the assumption that the variable
of stratification has a uniform distribution (Cochran, 1977) in each class. In this case, the pro-
blem of stratification has an ordinary solution when the Cumulative Root Frequency (CumRoot)
Algorithm, or Dalenius-Hodges rule is applied (please, see (Cochran, 1977), chapter 5 and
Sarndal et al. (Sarndal, 1992)).

The method implemented by Hedlin (1998, 2000) is associated with an extended Ekman rule
(Ekman, 1959). For this reason, the method of Hedlin is also called method of Hedlin altered.
According to Hedlin (2000), the strata delimitation is considered such that the variance of the
total estimator of a variable of interest, given by (3), has to be a minimum, considering n and L
fixed previously and applying Neyman’s allocation in each strata.

Kozak (2004) presents the modified random search algorithm as a method of the optimal
stratification presented by Rivest (2002). In a more recent work, Kozak and M.R. (2006)
performs comparisons between random search method and the geometric and Lavallée and
Hidiroglou (1988) approaches.

Gunning and Horgan (2004) and Horgan (2006) developed an algorithm that is easier to im-
plement and that applies the general term of a geometric progression to establish the boundaries
of the strata. Stratifying a population by a variable is to subdivide it into intervals with cutting
points b0 < b1 < ... < bL . The division should be based on the auxiliary variable X ,
correlated with the study variable Y . In order to define cutting points (b0, b1, ..., bL) Gunning
and Horgan (2004) use the following recurrence relation:

b2h = bh+1.bh−1 (7)

By this relation the stratum boundaries are terms of the following geometric progression:

bh = a.rh (h = 1, ..., L− 1) (8)

Thus, a = b0 is the minimum value of the variable (b0 = x1) , and arL = bL , the
maximum value (bL = xN) of the variable. It follows that the constant ratio can be calculated
as r = ( bL

b0
)

1
L . After stratum boundaries definition, Neyman’s allocation (5) is applied.

Gunning and Horgan (2007) also proposed a new approach to generate initial boundaries to
Lavallé and Hidiroglou algorithm, in order to improve the rate of convergence to the optimal
solution, often resulting in smaller sample sizes.

Khan and N. (2008) use a dynamic programming algorithm for determining the optimum
strata boundary points. This algorithm is applied considering two particular cases: the vari-
able X have a normal or a triangular distribution. They also consider the hypothesis that the
sampling is with replacement, or that sampling ratios nh

Nh
are small.

3 Proposed Algorithm

We present a new proposal to solve the stratification problem with Neyman allocation. It is a
search-based method that intends to work for variables with any distribution. In the subsequent



section, we will present some computational results obtained by applying this algorithm to some
skewed populations.

3.1 Iterated Local Search (ILS)

Iterated Local Search is a metaheuristic presenting desirable features like simplicity, robust-
ness and high effectiveness, when applied to a wide range of problems. According to Lourenço
et al.(Glover and Kochenberger, 2002), its essential idea ”lies in focusing the search not on the
full space of solutions but on a smaller subspace defined by the solutions that are locally opti-
mal for a given optimization engine”. The success of this method is directly associated with the
choice of the local search procedure, the perturbation procedure and the acceptance criterion.

The pseudo-code below shows the essential ILS steps. Step (1) constructs an initial solution
to which a local search is applied in step (2), in order to produce a solution s∗. Aiming at
reaching a better solution from s∗, steps (3) and (4) apply procedures of perturbation and local
search, respectively, that result in a new solution s” to be confronted with the solution s∗.

In step (5), if the new solution s” satisfies an acceptance criterion based on s∗, then the
attribution s∗ = s” is performed, otherwise the solution s∗ is maintained. Then, steps (3),
(4) and (5) proceed iteratively along m iterations, when the final solution s∗, the best one, is
outputted.

(1)s0 = GenerateInitialSolution
(2)s∗ = LocalSearch(s0 )
Repeat
(3)s′ = Perturbation(s∗)
(4)s” = LocalSearch(s′)
(5)s∗ = AcceptanceCriterion(s∗, s”)
Until(Termination condition met)

3.2 ILS Algorithm for Stratification

In order to implement the new methodology, we had to modify the input data structure. Since
the N observations XU are ordered in ascending order, it is possible to gather them, taking into
account only their distinct values. Thus, we have P distinct values of XU , gathered in a set
B = {b1, b2, ..., bP}, which are the eligible cutting points to stratify the whole population.

Consider, for example, N = 12, L = 3 and XU = (2, 4, 4, 8, 10, 11, 14, 15, 15, 15, 17, 18).
Then we have B = (2, 4, 8, 10, 11, 14, 15, 17, 18) = (b1, b2, b3, b4, b5, b6, b7, b8, b9) ⇒ P = 9,
and we may define, for example, A1 = {i|xi ≤ b3, xi ∈ XU}, A2 = {i|b3 < xi ≤ b6, xi ∈ XU}
and A3 = {i|b6 < xi, xi ∈ XU} as a candidate solution for the stratification problem (with
cutting points b3 = 8 and b6 = 14).

Analogously, for L strata and P boundaries , we have to find (L − 1) boundaries bk
from B. In short, considering a finite population of size N , that will be divided in L strata, and
the ordered values XU , we establish the set B. The solution for this problem will then consist
of boundaries bk , selected from B, that give the minimum variance according to (3).

The solution of the problem above can be obtained by considering the enumeration of all the
possible divisions of the observations associated to the set I , that is, by evaluating the variances
of all the solutions and selecting the one with the lowerst variance. However, this procedure may
take an excessively high computational time even for moderately high values of the number of
observations of I and/or the number L of strata. In fact, determining the number of solutions to
be considered corresponds to solve the following combinatorial problem:



Determine the number m of non-negative integer solutions of the equation

w1 + w2 + ...+ wh + ...+ wq = r (9)

Each wh corresponds to the number of elements of I allocated in each stratum h, q corre-
sponds to the number L of strata and r corresponds to the total of elements in I . In accordance
with the stratification problem, it is necessary to introduce a minor modification in equation (9)
in order to guarantee that the number of population observations is greater than or equal to 2 in
each stratum (wh ≥ 2).

Changing the variable wh = th + 2, th ≥ 0, and considering q = L and r = |I|, the equation
(9) can be rewritten as

t1 + t2 + ...+ th + ...+ tL = |I| − 2L (10)

and the number of solutions of the equation (10) is given by:

m =
(L+ |I| − 2L− 1)!

(|I| − 2L)!(L− 1)!
(11)

The number m of solutions increases very rapidly with L and |I|. For example, if |I| = 100
and L = 5 we will generate m = 3.049.501 solutions, and we will reach m = 40.430.556.376
solutions if |I| = 1000 and L = 5. It is important to remark that, in the case of an exhaustive
procedure, we will need to generate each one of these solutions and also evaluate the stratum
variances (see equation 3) for each set of strata, in order to stablish the stratum sample sizes.

Then, trying to reduce the potentially high number of operations needed to obtain the optimal
solution using the exhaustive enumerating process, we will instead solve the stratification prob-
lem by applying an algorithm based on ILS metaheuristc and provide a good feasible solution.

Generate Initial Solution: Initially, a set B = {b1, b2, ..., bP} with P values, corresponding
to possible cutting points, is defined. Then, a given number q of initial vectors are generated,
each one containing (L− 1) values randomly selected from B and ordered in ascending order.
Note: In this work, whenever we refer to a random selection we are considering an uniform
distribution. If L = 5 and P = 40, we may have, for example, the following solution vectors:

b3 b9 b16 b28

b2 b11 b25 b39

b4 b16 b22 b37

b6 b14 b28 b34

Among the q solutions, the chosen initial solution s0 is the one whose cutting points define
strata with minimum total variances, according to equation (3). A number q′ < q of the remain-
ing solutions with the smaller total variances according to (3), is stored into a set E. Set E is
updated at each algorithm iteration by replacing its worst solution by the one resulting from the
local search.

Perturbation Procedure: One of the (L− 1) cutting points bi of the solution s∗ and one of
the (P−L+1) cutting points bj not belonging to s∗ are randomly selected. Then, we replace bi
by bj in s∗, generating s′ . After this replacement, if the condition bs < bi < ... < bt is not
satisfied anymore, then we must reorder the elements of s′ in ascending order.

Local Search Procedure: It consists in a procedure of replacement followed by a path
relinking procedure (Glover and Laguna, 1997). In the replacement procedure, which is applied



to all the m algorithm iterations, one of the (L − 1) cutting points bi of the solution s′ ,
resulting from the perturbation procedure, is randomly selected. Each cutting point bi is then
replaced by bi+1, bi+2, ..., bk−2 and br+2, ..., bi−2, bi−1 , where bk is the next cutting point in
the solution and br is the previous one. In the example below, considering i = 16, k = 28 and
r = 10, we have

s” ... br bi bk ...

s” ... b10 b16 b28 ...

s” ... b10 b17 b28 ...

s” ... b10 b18 b28 ...

s” ... b10 ... b28 ...

s” ... b10 b26 b28 ...

s” ... b10 b15 b28 ...

s” ... b10 b14 b28 ...

s” ... b10 b13 b28 ...

s” ... b10 b12 b28 ...

The path relinking procedure is applied to each w (m mod w = 0) iterations, considering
the current best solution and all the solution se ∈ E. By performing increments or decrements
in each one of the cutting points associated to the solutions se, intermediary solutions si are
obtained. They are stored if f(si) < f(s∗).
The following example illustrates the application of this procedure:

s∗ b3 b13 b20

se b1 b11 b23

si b2 b11 b23

si b3 b11 b23

si b3 b12 b23

si b3 b13 b23

si b3 b13 b22

si b3 b13 b21

si = s∗ b3 b13 b20

Acceptance Criterion: This is a simple criterion consisting of evaluating the relative dis-
tance between the current best solution s∗ and the solution s” provided by the local search:

If (f(s”) < f(s∗)) Then s∗ = s”
else if |f(s∗)− f(s”)|/f(s∗) < ε Then s∗ = s”

where f is the objective function value considering equation (3) and ε is a tolerance factor.

4 Computational Results

In this experiment, we compare the performance of the new algorithm with the Geometric
(Gunning and Horgan, 2004), Cumulative Root Frequency and Random Search (Kozak, 2004)
algorithms. We used the Delphi language to implement the ILS and R language (http://www.r-
project.org/) to implement the Geometric, the Cumulative Root Frequency and the Random
Search algorithms . All computational results were obtained on an AMD Core Duo 2.31 Ghz
CPU with 2GB RAM running Windows XP.

Since the Geometric algorithm is deterministic (see (Gunning and Horgan, 2004)) and since
the Cumulative Root Frequency algorithm Dalenius and Hodges (1959) is a procedure of direct



application, possible performance differences due to a different implementation of the Geomet-
ric algorithm are not expected to be important in this study.

Thus, we did not perform detailed time comparisons between algorithms (roughly, for the
instances in this paper, the Geometric and Cumulative Root Frequency algorithms ran immedi-
ately, and the ILS spent on average less than five seconds of CPU time). Also, as many other
authors (see section 2.1), we work under the assumption that the values of a study variable Y
are equal to those of the stratification variable X .

In order to perform the comparisons, we used just sixteen populations skewed populations
(with degrees of skewness varying from 1.4 to 34.8), which were arbitrarily chosen : 1) six po-
pulations extracted from PAM - Produção Agrı́cola Municipal de 2004 (Municipal Agricultural
Production), and associated to the total area of harvest in cities in the states of Ceará (CE), Minas
Gerais (MG), Paraná (PR), Rio Grande do Sul (RS), Santa Catarina (SC) and São Paulo (SP); 2)
two populations (PopId) extracted from Pesquisa Industrial Anual de 2004 (Annual Industrial
Survey), and associated to the number of persons employed ; 3) one population (PopAgr) ex-
tracted from Censo Agropecuário 1995-1996 (Agricultural Census), associated to the effective
production of coffee; and 4) seven populations randomly generated (PopRd1-7) using a macro
implemented by Hedlin (Hedlin, 2000). Although we have performed computational tests just
to skewed populations, we emphasize that the method we are proposing is intended to apply for
populations with any distribution of the study and/or stratification variables.

For application of the ILS algorithm in each instance, we define the following parameters:
number of initial solutions q equal to 30, number of solutions of E equal to 10, tolerance
factor ε equal to 0.05 and the total number of iterations (m) equal to 50. A path relinking
procedure was applied every w = 10 iterations. And to the Random Search algorithm,
according Kozak (2004) we define number of iteractions R = 1000, p = 3 e and the initial
strata boundaries are obtained applying the Geometric Algorithm.

Table 1 gives information about the instances such as: identification, total population, P
number of observations in set B and sample size. It also contains the values of the coeffi-
cients of variation (equation (6)) obtained by applying the ILS, Geometric, Cumulative Root
Frequency and Random Search algorithms for each studied combination (population × number
of strata).

As we can observe in Table 1, the ILS algorithm provided, in general, minimum coeffi-
cients of variation, meaning a more robust performance when compared with the other three
algorithms.

Following Gunning and Horgan (2004) and others, in order to investigate whether the ILS
leads to a more efficient estimation than the Cumulative Root Frequency, Geometric and Ran-
dom Search algorihms, we can evaluate the relative efficiency via equations (12) and (14). Table
2 contains values of the relative efficiencies for each combination studied (population× number
of strata).

effVGeo,VILS
=
VGeo(X̂)

VILS(X̂)
(12)

effVCf ,VILS
=

VCf (X̂)

VILS(X̂)
(13)

effVCf ,VRS
=

VRS(X̂)

VILS(X̂)
(14)



where VGeo , VCf , VRS and VILS are the variances (3) under the Geometric, Cumulative
Root Frequency, Random Search and ILS algorithms, respectively.

From the analysis of Table 2, we can see that the ILS algorithm produced in most cases,
better solutions than the Geometric, Cumulative Root Frequency and Random Search ones in
roughly all the cases, regardless of the number of strata. Also, the Geometric algorithm had the
worst performance.

Pops ILS Geometric Cum.Freq RS
Size Obs. Sample Strata (L) Strata (L) Strata (L) Strata(L)

Label N P n 3 4 5 3 4 5 3 4 5 3 4 5
PopCE 184 173 80 1.7 1.2 0.9 5.6 3.9 3.5 2.7 1.9 1.5 1.2 1.3 1.1
PopMG 845 238 100 4.1 2.7 2.1 9.4 6.8 4.8 4.6 3.0 2.4 4.4 2.9 2.3
PopPR 397 268 120 2.3 1.6 1.2 4.0 2.9 2.3 2.6 2.0 1.5 2.7 2.0 1.7
PopRS 489 197 60 4.9 3.4 2.6 9.8 7.9 6.6 5.2 3.6 2.9 7.1 4.9 3.1
PopSC 283 176 100 2.3 1.7 1.3 5.6 4.1 3.0 2.8 1.9 1.4 2.5 1.7 1.3
PopSP 586 272 100 3.3 2.5 2.0 7.8 5.2 3.6 3.5 2.7 2.2 3.4 2.2 1.8
PopId1 2911 247 140 4.4 3.0 2.4 4.6 3.2 2.5 4.6 3.5 2.5 4.5 3.0 2.5
PopId2 1076 88 40 4.7 3.6 2.8 6.6 5.2 3.8 7.3 4.4 3.0 6.6 5.2 3.8
PopAgr 20472 784 100 6.7 4.8 3.9 6.8 5.0 4.0 6.9 5.2 4.0 7.4 5.5 4.4
PopRd1 1000 1000 100 0.6 0.4 0.3 0.8 0.6 0.5 0.6 0.5 0.4 0.7 0.5 0.4
PopRd2 1000 1000 100 4.1 3.0 2.3 10.1 7.9 6.4 4.3 3.7 2.5 4.0 3.2 2.5
PopRd3 1000 1000 100 2.5 1.9 1.5 4.2 3.2 2.4 2.5 2.0 1.7 2.5 2.1 1.7
PopRd4 1000 1000 100 1.4 1.1 0.9 1.8 1.4 1.2 1.7 1.1 1.0 1.8 1.4 1.1
PopRd5 1000 1000 50 0.5 0.4 0.3 0.6 0.5 0.4 0.5 0.5 0.4 0.5 0.4 0.4
PopRd6 1907 707 200 2.4 1.8 1.2 2.4 2.2 1.6 3.5 2.1 1.4 2.4 2.3 1.6
PopRd7 3838 1110 195 3.8 2.8 2.2 4.1 3.3 2.6 3.9 2.9 2.3 4.1 3.3 2.7

Mean cv 3.1 2.2 1.7 5.3 4.0 3.1 3.6 2.6 1.9 3.5 2.6 2.0

Table 1: Results for the ILS, Geometric, Cumulative Root Frequency and Random Search Algorithms

Pops effGeo,ILS effCf,ILS effRS,ILS

Strata (L) Strata (L) Strata (L)
Label 3 4 5 3 4 5 3 4 5

PopCE 10.9 10.6 15.1 2.5 2.5 2.8 0.5 1.2 1.5
PopMG 5.3 6.3 5.2 1.3 1.2 1.3 1.2 1.2 1.2
PopPR 3.0 3.3 3.7 1.3 1.6 1.6 1.4 1.6 2.0
PopRS 4.0 5.4 6.4 1.1 1.1 1.2 2.1 2.1 1.4
PopSC 5.9 5.8 5.3 1.5 1.2 1.2 1.2 1.0 1.0
PopSP 5.6 4.3 3.2 1.1 1.2 1.2 1.1 0.8 0.8
PopId1 1.1 1.1 1.1 1.1 1.4 1.1 1.0 1.0 1.1
PopId2 2.0 2.1 1.8 2.4 1.5 1.1 2.0 2.1 1.8
PopAgr 1.0 1.1 1.1 1.1 1.2 1.1 1.2 1.3 1.3
PopRd1 1.8 2.3 2.8 1.0 1.5 1.4 1.4 1.6 1.8
PopRd2 6.1 6.9 7.1 1.1 1.5 1.1 1.0 1.1 1.2
PopRd3 2.8 2.8 2.6 1.0 1.1 1.3 1.0 1.2 1.3
PopRd4 1.7 1.6 1.8 1.4 1.1 1.2 1.7 1.6 1.5
PopRd5 1.4 1.6 1.8 1.0 1.1 1.1 1.0 1.0 1.8
PopRd6 1.0 1.5 1.8 2.1 1.4 1.4 1.0 1.6 1.8
PopRd7 1.2 1.4 1.4 1.1 1.1 1.1 1.2 1.4 1.5

Mean eff 3.4 3.6 3.9 1.4 1.4 1.3 1.2 1.4 1.4

Table 2: Efficiences of the ILS, Geometric, Cumulative Root Frequency and Random Search Algorithms

In a future work, we intend to implement and incorporate to the ILS algorithm more sophisti-
cated procedures and acceptance criterion, expecting to get better solutions than those presented
in this study. For example, trying to improve the local search we may adopt a VNS aproach,
following the basic concepts of Ribeiro and Urrutia (2008) and Hansen and Mladenovic (2001).
The generation of initial solutions, that corrently is carried out almost purely at random, may
also be modified by applying some greedy construction based on previous evaluation of inser-
tions of cut points. Finally, we intend to consider the application of a Markovian acceptance
criterion, as proposed in Martin and E.W. (1991).
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