Автор: Ш.К.Агзамов, С.Б.Неъматова
Источник: Ш.К.Агзамов, С.Б.Неъматова.Особенности создания и использования эффективных теплообменных аппаратов/Международный научный журнал«Техника.Технологии.Инженерия.». – №2(16). – 2020 – с.19-22.
Ш.К.Агзамов, С.Б.Неъматова Особенности создания и использования эффективных теплообменных аппаратов.
Рассматриваются особенности создания и использования эффективных теплообменных аппаратов. Представлен конструкции труб с развитой поверхностью теплообмена. Приведен порядок определения степени развитости поверхности теплообменника, коэффициента теплопередачи, а также расчет уравнения теплопередачи.
Теплообменный аппарат будет легче переносить тепло, если теплоносителя с более высокими значениями температуры и давления направить внутрь труб. Это позволяет в первом случае расходовать остродефицитные высоколегированные стали только для трубной решетки, а кожух делать из более простых материалов. Во втором случае облегчается чистка труб в процессе эксплуатации теплообменников. Как правило, среды, по которым лимитируются потери давления (а это обычно газообразные среды с меньшим давлением), удобнее размещать снаружи труб; меняя шаги размещения труб в пучке, число ходов в межтрубном пространстве, можно выдержать заданные потери давления.
Если один из теплоносителей испаряется или конденсируется, то его удобнее направить в межтрубное пространство, в противном случае, как правило, неизбежно неравномерное распределение расхода теплоносителя по трубам и снижение эффективности работы аппарата.
Несмотря на разнообразие используемых теплообменников, можно кратко сформулировать предъявляемые к ним основные требования теплового, гидродинамического, конструктивного, эксплуатационного и технологического характера:- максимальная компактность, т. е. аппарат при заданных значениях тепловой мощности и мощности на прокачку теплоносителей имеет малый вес и габаритные размеры.
Решение вопроса о том, какой теплоноситель следует направить внутрь труб, а какой снаружи, зависит от давления и температуры сред, удобства компоновки аппарата в той технологической схеме, в которой он работает, от агрессивности теплоносителя и загрязняемой им поверхности теплообмена, от допустимых потерь давления по теплоносителю. Из всех существующих типов рекуперативных аппаратов пластинчато-ребристые обладают наибольшей компактностью, они позволяют разместить в 1 м3 объема аппарата до 1500 м2 поверхности теплообмена. Корпусы таких аппаратов обычно делаются прямоугольными, что исключает их использование при высоких температурах и давлениях теплоносителей.
Одной из разновидностей трубчатых аппаратов являются трубчато-ребристые. Они используются в тех случаях, когда коэффициент теплоотдачи снаружи труб во много раз меньше коэффициента теплоотдачи внутри труб. Увеличение поверхности теплообмена снаружи труб и дополнительная турбулизация потока ребрами позволяют значительно увеличить теплосъем с поверхности теплообменных труб. Улучшение тепло гидродинамических характеристик поверхностей нагрева возможно несколькими способами, одним из которых является развитие внутренней и наружной поверхностей труб радиальным вдавливанием участков стенки трубы с образованием впадин и выступов различного профиля. Увеличение поверхности теплообменного аппарата позволяет получить существенное развитие поверхностей, омываемых теплоносителями внутри и снаружи, а также интенсифицировать теплообмен за счет турбулизации потоков в выемках и впадинах.
Интенсификация теплообмена в трубах позволяет уменьшить минеральные отложения на внутренней поверхности примерно в пять раз по сравнению с гладкими круглыми трубами. В связи с этим представляет практический интерес предлагаемый учеными класс пружинно-витых каналов, витки которых выполнены из проволоки различного поперечного сечения и жестко скреплены лазерной сваркой.