
Security for a Multi-Agent System based on JADE

X. Vila*, A. Schuster, A. Riera

Department of Electronics and Computer Science, University of Santiago de Compostela, Campus Universitario s/n 15782 Santiago de

Compostela, Spain

a r t i c l e i n f o

Article history:

Received 6 September 2006

Accepted 11 December 2006

Keywords:

Multi-agent

JADE

JADE-S

Learning management

Authentication

Authorization

Encryption

Signature

Availability

a b s t r a c t

The present paper explores the challenges, issues and solutions to satisfy the security

requirements of a Multi-Agent System (MAS) based on the JADE framework. By means of

a prototype system used for Learning Management, an adequate security concept for

MAS in general is presented. Hereby several security features are considered, ranging,

among others, from the authentication of users over encryption of the exchanged data

up to the authorization of the access to services designated only to a determined group

of users.

ª 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The agent concept originated in the area of Artificial Intelli-

gence. Nowadays, an agent can be considered software com-

ponents that are capable of acting with a certain degree of

autonomy, reactivity and pro-activeness in order to accom-

plish tasks on behalf of its user (Wooldridge, 2002).

Multi-Agent Systems (MAS) arise when several agents are

grouped together in a single system. While the single agents

still aim at their own local tasks, a global object normally is

followed by the MAS through the communication between

the system agents. Thus a Multi-Agent System can manifest

self-organization and complex behaviours even when the

individual strategies and capabilities of all their agents are

simple.

For the development of such distributed Multi-Agent

Systems, the JADE Framework (Java Agent Development

Framework) offers a Java middleware based on a peer-

to-peer architecture (JADE) with the overall aim to provide

a runtime support for agents. To guarantee interoperability

between agents, JADE is compliant with the FIPA specifica-

tions (FIPA). The Foundation for Intelligent Physical Agents

(FIPA) is an international non-profit association of companies

and organizations sharing the goal and the effort to produce

standard specifications for agent technology.

Although the agent paradigm appears promising, it is

important to dedicate part of the research to the security

issues that need to be addressed before the resulting system

can be presented as a viable solution in real scenarios. Other-

wise, data exchanged between agents could be spied,modified

* Corresponding author. Tel.: þ34 981 563100x13565; fax: þ34 981 528012.
E-mail addresses: vila@dec.usc.es (X. Vila), alx.s@web.de (A. Schuster), eladolfo@usc.es (A. Riera).

ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose

0167-4048/$ – see front matter ª 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2006.12.003

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0

mailto:eladolfo@usc.es
http://www.elsevier.com/locate/cose
mailto:alx.s@web.de
mailto:vila@dec.usc.es

or denied. With an adequate security concept, however, it can

be guaranteed that the Multi-Agent System acts in an

expected way in all scenarios.

Considering an Intelligent Learning Management System,

called EUME, as an example, this paper explores the

challenges of security in an MAS and then presents a security

concept handling these issues.

Section 2 constitutes an overview of this exemplary Multi-

Agent System (EUME). In Section 3 the JADE-S add-on will be

presented to familiarize the reader with the possibilities

offered by JADE to secure the MAS. Setting up on this informa-

tion, Section 4 provides a study of security requirements and

presents a concept to solve them.

Finally, a description of the planned future work is

provided based on the results presented in this paper.

2. The EUME system

This paper presents a security concept by means of an

exemplary Multi-Agent System. The system, called EUME

(Spanish acronym for Multimedia Ubiquitous Environment

for Education), was implemented at the University of

Santiago de Compostela in order to improve the efficiency

of the classic learning methodologies (Vila et al., 2004;

EUME).

Currently installed and tested in a classroom, EUME is

equipped with a principal server where its services are exe-

cuted; a central database, where all information is saved;

a classroom server, situated in and managing the resources

of the classroom (projectors, cameras, applications, electronic

blackboard, etc.); and finally PDAs used as Graphical User

Interfaces for the users.

In the resulting EUME platform the agents are grouped

according to the function of their tasks in three well differen-

tiated layers:

� Client layer: agents that provide the Graphical User Inter-

faces (GUIs) that are necessary for the users to interact

with the system.

� Service layer: contains agents that provide high level services

for clients by managing the resources.

� Resource layer: contains agents that manage directly the

resources.

The distributed nature of the system is reached by locating

each layer on a different network host, thus providing its tasks

as a loosely and transparently coupled platform managed by

the JADE framework. The service layer is entirely installed on

the centralized principal server and is incorporated by two

Agent Containers and their agents (one container executing

the teacher and one the student services). The resource layer

on the other hand is distributed among the classroom servers

eachmanaging the resources of its classroom and being incor-

poratedbyanAgentContainer and its agents, respectively. The

central database is also located on an own network host and

managed by another Agent Container and its agent. The client

layer is likewise distributed over the users’ PDAs each execut-

ing an own Agent Container and its agents as shown in Fig. 1.

3. JADE-S and IMTPoverSSL

JADE-S (Version 2) (JADE, 2005) is a plug-in for the JADE frame-

work providing some security features to the platform. The

current version 2 of the security plug-in replaces completely

the anterior version 1. Extending the Java security model

based on a customizable ‘‘sandbox’’ (Sun Developer Network)

it uses the following security features to comply the needs for

security of a Multi-Agent System:

� User authentication (authentication);

� Authorization of the actions performed by agents

(authorization);

Client Layer Service Layer

DB/R

Web/R

App/R

Device
/R

Resource Layer

:language fipa-sl
:ontology eumeOnto
:protocol fipa-query

RDF
 WebODE Generated

Contents
Repository

EUME Onto
Ontology

Jade Classes

Activity
Agent

Activity
Student
Agent

Teacher

Student

Student

Internet

Fig. 1 – EUME architecture.

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0392

� Message signature (data integrity, non-repudiation);

� Encryption (confidentiality).

The JADE-S plug-in does this by providing four JADE kernel

services (Care, 2005), one for each point:

� Security Service (authentication);

� Permission Service (authorization);

� Signature Service (message signature); and

� Encryption Service (message encryption).

Beside the obligatory Security Service as a base service to

run JADE-S, the other ones can be executed independently of

each other.

The Agent Containers in a JADE platform normally are dis-

tributed over different network hosts. In order to dominate se-

curity in such an open and distributed environment JADE-S

introduces the concept of amulti-user systemwhere all compo-

nents (agents, containers) in a platform are owned by authen-

ticated users, who in turn are authorized by the platform

administrator to perform only certain privileged actions.

Moreover, each agent owns a public and private key pair by

means of which it can sign and encrypt messages.

A basic scheme of secure agent platform using JADE-S can

be seen in Fig. 2.

The Main Container has access to a password store, like

a local password file or a remote LDAP server, and is in posses-

sion of a global platformwide permission file. Whereas, a nor-

mal Agent Container only has his local permission file. Each

agent holds an asymmetric key pair (public and private key)

and a certificate to attest his identity. This identity certificate,

containing among others the agents principal name and

owner, is digitally signed by the AMS agent (Agent Manage-

ment System)which acts like a Certification Authority to guar-

antee the certificate’s authenticity. Containers and Agents are

owned by a user.

Below the single services that are offered by JADE-S are

explained more in detail beginning with authentication and

authorization/permission up to signature and encryption.

3.1. Authentication with JADE-S

In JADE-S authentication is carried out by the Security Service

and is the base of the plug-in and all its other services. As

explained above each component of the platform belongs to

an authenticated user. Based on the JAAS API (Sun Developer

Network, JAAS) of Java the authentication system is composed

of two elements: a CallbackHandler (like a dialog box) that

allows the user to provide his username and password and

a LoginModule that checks against the password store if the

username and password are valid.

A set of standard LoginModules is supported by JADE-S: the

Unix and WindowsNT (both checking against the current user

of the corresponding OS session), the Kerberos (checking

against a Kerberos server) and Simple (checking against a local

plaintext password file) login modules.

Each user starting a container and its agents has to authen-

ticate itself thus owning this container and its agents. This

implicates that the user who boots the platform, by starting

the Main Container, also owns this one, the AMS and the DF

(Directory Facilitator). Over the CallbackHandler he provides

his username and password locally to his container which

sends this information to the Main Container which on its

part checks themwith a LoginModule against the correspond-

ing password store. The authenticated username fromnow on

is used as owner name of the user’s components (agents, con-

tainer). If the authentication is successful the Agent Container

and his agents may join the platform. If any problem occurs

during authentication, or the user fails to be correctly authen-

ticated, then the local JADE system will exit and generate an

appropriate error message.

3.2. Authorization with JADE-S

Thanks to the authentication mechanism, which assigns

agents to a user, the Permission Service of JADE-S is able to

provide authorization for the multi-user JADE system.

All actions that authenticated users or their principals can

perform in the platform can be permitted or denied according

to a set of rules (Access Control List). This Access Control List

is saved in a policy file, usually named policy.txt, that follows

the default Java/JAAS syntax to define permissions that con-

figure the java security’s sandbox accordingly. Every action

that is not explicitly allowed in this policy file will be denied

to the agents.

Beside the permissions provided by Java for the access to

local resources (JVM, network, file system, etc.) an extended

policy model was implemented in JADE-S thus providing

Main Container Agent Container

AMS DF A3

User A User B

platform
permission

file

password
store

container
permission

file

Certificate CertificateCertification
Authority

Fig. 2 – JADE-S architecture.

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0 393

a greater flexibility for a distributed Multi-Agent System. In

this extended JADE-Smodel authenticated users or their prin-

cipals can be granted the following rights in the policy file:

� Platform Permission: right to create/kill a Main Container;

� Container Permission: right to create/kill an Agent Container;

� Agent Permission: right to create/kill an agent in a container;

� AMS Permission: right to register/deregister agents in the

AMS;

� Message Permission: right to send messages to other agents.

The Main Container is in possession of a platform policy

file specifying platform-wide permissions while each other

container is in possession of a local policy file specifying cor-

responding local container. Rights given to a user are trans-

mitted automatically to all his owned agents.

When coming to the point to enforce the access rights dur-

ing the platform execution the signed identity certificates held

by each agent are used to identify the agents name and

owners and to apply the rules to them.

3.3. Signature and Encryption with JADE-S

When sending an ACL messages, both to an agent running on

the same or a foreign platform, signature guarantees the data

integrity and non-repudiation whereas encryption guarantees

confidentiality.

In JADE-S signature and encryption are enabled by the fact

that each agent holds an asymmetric private and public key

pair. The Signature Service, applying its signing/verifying

operation, and the Encryption Service, applying its encrypt/

decrypt operation, always operate on the whole payload in

order to protect all the sensible data of the ACL message.

The security-related information for the Signature Service,

as the public key, signing algorithm and message’s signature,

thereafter, is placed into the envelope.

Agents only have to request the signature or encryption of

a message, by calling the corresponding methods of their

SecurityHelper class (i.e. setUseSignature(msg)), before sending

it and do not need to deal with decryption and verification of

a signature. This is done transparently in the corresponding

service when proceeding a received message in the incoming

filter chain. If some error occur, decrypting or verifying a sig-

nature, themessage is discarded automatically and a FAILURE

ACL message is returned. This implicates that each time an

agent receives a signed and/or previously encrypted message

the signature and/or encryption was already checked and/or

decrypted at a lower level and is valid.

3.4. IMTPoverSSL

Apart from JADE-S, another security concept for JADE is pre-

sented in the paper. This concept provides confidentiality,

data integrity and mutually authenticated connections

amongst JADE Containers by running its Internal Message

Transport Protocol (IMTP) over TLS/SSL (Vitaglione, 2004), i.e.

RMI over SSL. This container-to-container based structure is

different from the agent-to-agent based one of the JADE-S

plug-in. Each container is endowed with a certificate, holding

among others his public key. Additionally, all certificates of all

other containers of the platform are held in the trust store of

each container.

The mutual authentication, encryption and signature then

is performed by the TLS/SSL protocol (Dierks and Allen, 1999):

each container presents his own certificate to the communi-

cation partner and looks if the one presented to it is saved in

its trust store. Successfully passed that phase the TLS/SSL pro-

tocol continues with encryption and signature of all informa-

tion exchanged between the containers.

This mechanism can be used independently of the JADE-S

plug-in.

4. A security concept for MAS

In spite of its functionality of providing authentication, autho-

rization, message integrity, non-repudiation and confidential-

ity, it has to be admitted that JADE-S is still in an early phase of

development. That is why it suffers from security shortcom-

ings or does not cover all necessary features to secure an

MAS entirely as necessary. By means of these shortcomings

and the additional necessary features now a complete secu-

rity concept for a Multi-Agent System will be introduced in

this section.

In order not to reinvent the wheel, however, it was decided

to use one of the two presented concepts in Section 3 as a base

for security of the system. In the end the selection fell in fa-

vour of JADE-S and not of the IMTP-SSL concept for the follow-

ing reasons. In the first place, IMTP-SSL does not provide

authorization, which may result very important in some sys-

tems. Secondly, it does not provide an agent aware security

by applying its security features at a container level thus

authenticating, encrypting and signing all information ex-

changed between containers. This fact, however, does not en-

able the agents to determine autonomously the grade of

security they desire, based on the message destination for ex-

ample. Finally, IMTP-SSL is a very rigid concept that assumes

that all containers have to hold the certificates of all others

with which they want to communicate, thereby restricting

the extensibility of the MAS platform at a high level.

So JADE-S will be used and applied to provide the basic se-

curity features for the EUME system. Further additional secu-

rity features, to compensate the uncovered fields and

shortcomings of JADE-S, will be analyzed, singled out, imple-

mented and installed on top of its fundamental traits. By

means of our study of JADE and JADE-S these lacks could be

identified and the resulting security concept will be explained

and improved step by step in the next subsections.

4.1. The authentication concept

Using JADE-S, the Security Service as a base service always has

to be started thus providing yet authentication for the system.

The varieties of the possible password stores for authentica-

tion, used from the system to check the username and pass-

word, however, are kind of limited. LoginModules to check

the password against the one of the user extracted from the

current Operating System session of Unix or Windows on

the Main Container are provided. This, however, implicates

that all users need an account on that machine. Inherently

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0394

an unusual behaviour for a great system beyond that the loca-

tion independency is not guaranteed. Great problems occur

when trying to migrate the system for example.

This is only one of the disadvantage that the system inde-

pendent Kerberos LoginModule corrects by providing a secure

and widely accepted infrastructure that allows centralized

authentication and authorization for a heterogeneous server

environment. JADE hereby could use this infrastructure to

uncouple the password store from the Main Container and

provide a secure authentication. Generally a good method if

such an infrastructure is already existent, it is quite an over-

head, however, to install and use a Kerberos server only for

a single JADE based system.

Last but not least a simple plain text password file saved on

the Main Container could be used but does not provide the de-

sired security and it is advised by JADE-S to use it only for test-

ing purposes.

Fortunately JAAS, that is utilized in JADE-S to provide au-

thentication, offers a pluggable architecture and an API with

which new LoginModules can be written and used to authen-

ticate against every kind of password store. After a study of

the available and appropriate systems that can provide au-

thentication and how to include them into JADE-S the decision

fell upon a LDAP server (OpenLDAP Foundation, 2005) as

a password store. LDAP normally provides a sophisticated di-

rectory service. The crucial reasons for its election are:

� LDAP nowadays has the state of a standard mechanism for

authentication with defined interfaces (accessible from

java).

� It provides a high level of security by supporting different se-

cure authentication mechanisms.

� It can act as an independent single sign on for many or only

one server.

� Beside authentication it can be used in any MAS for autho-

rization purposes or simply as a directory service storing

user information.

The LDAP server will be installed on an own network host

and prepared correctly for EUME. Connecting to it over the

network, theMain Container is able to check the password, in-

troduced by the user during authentication, against the pass-

word field of the corresponding user entry in the LDAP server.

Therefore, an adequate LoginModule have to be implemented

and added to JADE-S. Our LDAPLoginModule has to implement

the Java interface javax.security.auth.spi.LoginModule. By doing

this it complies the norms and can be plugged in every appli-

cation using JAAS.

In order to access the LDAP server from this module, we

can use an unified interface provided by Java for multiple

naming and directory services, called JNDI (Java Naming and

Directory Interface) (Sun Developer Network, JNDI). Using

methods of this standard we can access the LDAP server, au-

thenticate with an authentication mechanism provided by

the server and check if the user password is correct. To guar-

antee security we chose DIGEST MD5 (Leach and Newman,

2000) as a secure authentication mechanism and encrypt the

connection between Main Container and LDAP server by

using TLS.

4.2. The authorization concept and an architecture

Having the authentication running, the JADE-S Permission

Service can be used to provide a basic low level authorization

for agent, container and platform creation as well as commu-

nication between agents. Furthermore, it is necessary, like in

the case of authentication, to introduce additional features

that warrant an all-embracing security.

The examination of JADE and JADE-S brought these basic

shortcomings in the field of authorization to the surface.

The Message Permissions are quite generic and limited by

only providing the possibility to determine the permission to

send and receive messages to/from owners or agents. Finer

grained access to specific functionality provided by a special

agent cannot be defined, however. Either it is permitted to

send a message to an agent and thus having the possibility

to access (in an autonomous way) the whole agent’s function-

ality or it is not permitted to send to it at all.

As an example the interaction with the DF could be men-

tioned. If it is permitted to an owner/agent to send to the DF

then automatically all of its provided actions regarding the

yellow page service are accessible: register or deregister a ser-

vice description of a service provided by an agent, modify

a registered service description or search for agents that

meet a given constraint (i.e. that offer a certain service).

JADE-S provides also user/agent based permissions but it is

not possible to determine own user specific permissions to

regulate the access to services provided by agents.

In the case of a LearningManagement System for example,

it is important to distinguish between services provided for

teacher agents that have to be accessible only from teachers

and services provided for students that should be accessible

only by students (but also could be by teachers for example).

To clarify this in the context of EUME Fig. 1 can be consulted.

Due to these insufficiencies, an architectural change of our

MASwas conceived, tested in a prototype and implemented fi-

nally in the system. On its base stands the division of agents of

the platform in two categories: system agents and client agents.

The system agents consist of all agents of the resource layer

(i.e. projector agent or database agent), service layer (i.e. test

service agent or presentation service agent) andMediator layer

(explainedafterwards). Theseagentswere implementedby the

EUMEprogrammers, tested in a trusted environment and their

source code is physically unaccessible and unchangeable by

others. In this way they do exactly what we want them to do

if they are not influenced maliciously by non-system agents

(i.e. killed or modified by others) during runtime. The system

agentswillnothaveanyconstrainton theactions theyperform

regardingagent creation aswell as the twoMainContainer ser-

vice agents, thus receiving the full access to the AMS (deregis-

ter, register, modify, search, send-to) and the DF (deregister,

register, modify, search, send-to).

On the other hand, the client agents consist of all agents of

the client layer. These are agents that consume or manage

the learning services provided by theMAS. In the actual devel-

opment state the client agents either are executed by teachers

or students. Even if Graphical User Interfaces are provided by

EUME for the clients in order to interact with the system, we

do not have any control over these agents. The source code

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0 395

could be changed or newly programmed to performmalicious

anddangerousactions (i.e. deregister or kill other agents). That

is why it was decided to deny them the access to the DF at all

and only allow them to register, deregister and create agents

in their own container running on their PDA.

By reason of this categorization of agents it is possible to

overcome the lack of authorization left by JADE-S. This will

be donewith a change of the system’s architecture. Therefore,

an own layer will be introduced between the client layer (‘‘bad

agents’’) and the service layer (‘‘good agents’’): a Mediator that

acts as security check. The resulting security architecture for

EUME is shown in Fig. 3.

Client agents are negated to communicate directlywith the

DF at all and in case of the AMS only are allowed to act for their

owned agents running on their container (deregister, register,

etc.).

Forced in the sameway, withMessaging Permissions of the

JADE-S Permission Service, the client agents only are allowed

to sendmessages to theMediator agent(s). To have their needs

processed a client now requests a service from the Mediator

instead of directly to the service layer agents. The Mediator

then performs a high level permission check of the sender’s

access rights and, thereafter, forwards the messages to the

destination if the access is granted or drops the message

and returns a FAILURE message to the sender otherwise. For

performance reasons several Mediator agents can be

launched to distribute the work among them.

In this way, the following two level authorization is imple-

mented in the system:

� low level authorization: provided by JADE-S; offering basic

permissions like agent, container and platform creation;

enabling the new layered security architecture with

convenient message permissions thus enforcing the com-

munication through the Mediator.

� high level authorization: provided by theMediator; offering so-

lution for partial access to services provided by agents (i.e.

DF) as well as the high level permission check to access

group services (i.e. for teacher).

To realize this high level authorization the Mediator pro-

vides two different behaviours up to now: a regulated access

to the DF and a high level permission check. As client agents

may need to access the DF, to register a new service descrip-

tion of a service they provide or search for a service they

want to use, it is necessary to make these features available

to them. As the direct communication with the DF is not

allowed anymore for the clients, the Mediator agent, as a sys-

tem agent, has to provide a regulated access to the DF. When

a client for example wants to know which agents provide

a specific service, it sends a search request with the corre-

sponding service description to the Mediator. This one on

his part checks if the client has access to this DF functionality.

If so it starts an adequate request to the DF and then returns to

the client the agent identifiers (AID) of the agents that provide

the desired service.

The second point, regarding authorization implemented by

the Mediator, is the high level permission check. Hereby, it is

considered to obtain an access control to teacher and student

services. In the actual development state the client agents ei-

ther can be grouped into teachers, authorized to access teacher

services,or students, authorized toaccessstudentservices.The

teachers and students have to authenticate themselves as

many different users (i.e.myTeacher) thus owning their agents

(i.e. UIpresentationControlAgent has theownermyTeacher). In

order to distinguish the requesting agents according to their

LDAP
Server

Client Layer Service Layer

DB/R

Web/R

App/R

Device
/R

Resource Layer

:language fipa-sl
:ontology eumeOnto
:protocol fipa-query

RDF
 WebODE Generated

Contents
Repository

EUME Onto
Ontology

Jade Classes

Activity
Agent

Activity
Student
Agent

Teacher

Student

Student

Internet

Mediator

Layer

Student

Mediator
Agent

Fig. 3 – Security architecture of EUME with a Mediator.

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0396

group it is necessary for the Mediator to relate their owner to

one of the groups (i.e.myBadestStudent appertain to the group

of students). Therefore, theMediator consults the LDAP server,

also used for authentication, over a secure channel. In this

directory thegroup, towhichauser belongs, is saved in thecor-

respondinguserentry.Basedonpredefinedauthorizationrules

and equipped with the group information, the Mediator can

control the access to the service layer.

It has to be append that high level authorization exceptions

can be defined with which a professor can enable a specific

student to access temporally some well specified teacher

services (i.e. myTeacher grants to myBestStudent the rights

to access the presentation service and lets the student explain

some of the teacher’s PowerPoint slides).

With a MessageTemplate it is possible for the Mediator to

differentiate the aim of the received ACL message thus able

to distinguish if the agent needs a regulated DF request or

wants to access some services on the service layer.

Thanks to the extensibility of the concept it will be possible

in the future to amply the Mediator’s functionality and add

further behaviours that provide partial access to services of

other agents or adapt it to further services prepared for other

groups.

With the JADE-S Permission Service it is also possible to as-

sure the desired layer based architecture of EUME: Clients

communicate, over the Mediator, with their services on the

service layer. The service agents on their part access the re-

source agents to accomplish their tasks. With the Message

Permissions this architecture now can be enforced entirely

by controlling that agents only can send messages to other

agents that are located on a neighbouring layer.

4.3. Encryption and signature

Up to this point data integrity, non-repudiation and confi-

dentiality are not considered. The first two features can be

guaranteed with a signature of a message digest of the ex-

changed messages whereat the last feature can be assured

with message encryption. JADE-S, therefore, provides the

Encryption and the Signature Service. Both of these kernel ser-

vices utilize the asymmetric key pair that JADE-S creates for

each agent.

Generally, it is better that an agent is aware of security thus

being capable to determine autonomously the grade of secu-

rity it desires, based on the message destination for example.

With the help of the Encryption and Signature Service, such an

agent security awareness is given based on the fact that an

agent has to enable the encryption and/or signature manually

by itself for each message it sends.

Unfortunately, the studying of JADE-S and sniffing of the

exchanged traffic between containers showed another short-

coming of JADE-S: the Encryption Service cannot guarantee a se-

cure channel for authentication and platform managing

commands.

With the network protocol analyzer Ethereal, we proved

that passwords are sent over the network in plaintext to the

Main Container, for authentication purposes, and cannot be

encrypted by the Encryption Service. This results from the

fact that the Encryption Service is restricted to encrypt only

ACL messages but platform managing commands (i.e. join

new container, create agent) are ignored. Having a password

sent in plaintext over the network it is easy to spy and then in-

corporate the user’s identity. This is a security lack that can-

not be tolerated. Therefore, the Encryption Service will not

be used and an alternative have to be found.

A complete new encryption service based on certificates

could be mounted. In this case, however, emerges the same

problem as when trying to adapt the existing JADE-S Encryp-

tion Service: it is necessary to penetrate in a closed framework

and change lines of code to perhaps be able to encrypt also

platform commands. This intrusion is not desired.

So our attention turned on the IMTPoverSSL concept, pre-

sented in Section 3.4, that runs the Internal Message Trans-

port Protocol, RMI in the case of JADE and JICP in the case of

LEAP (see Section 4.4), over a SSL secured connection to ex-

change information between containers. Thus the two imple-

mentations RMIoverSSL for JADE and JICPoverSSL for LEAP,

provide confidentiality and data integrity for all exchanged in-

formation (even platform managing commands). The unde-

sired characteristic of these implementations is the mutual

container authentication, which takes place before the secure

connection is established. The communicating containers au-

thenticate each other through certificates. Therefore, all con-

tainers have to possess the certificates of the containers they

want to communicate with. These certificates are saved, re-

spectively, in a java trust store. Applying that to our Multi-

Agent System this involves that each client (teacher or stu-

dent) needs a certificate of its own. Furthermore, when being

issued to a client, the certificate has to be imported in all trust

stores of the client’s communication partners: in the case of

the current EUME architecture this would be the Mediator

and Main Container.

Nevertheless, for our MAS we need to follow a protocol

with which only the system’s Mediator and Main Container

authenticate themselves to the user clients. Using such

a SSL based protocol, instead of one with mutual authentica-

tion, the advantage of authenticating the Main Container

and Mediator remains, but on the other hand, the undesired

client authentication may disappear. That is why we have de-

cided to develop a new IMTPoverSSL module for EUME. The

newmodule is based on the existing IMTPoverSSL implemen-

tation but, before the information is encrypted, it processes

only a single-sided authentication instead of a mutual one.

Such a decision involves that, in the EUME system, only the

Mediator and the Main Container need certificates to be au-

thenticated to the clients.

Regarding the JADE-S Signature Service it provides some ad-

ditional security on top of the encryption presented above.

Unlike the container-to-container based procedure of the

IMTPoverSSL concept it provides an agent-to-agent signature

that ensures that each message arriving at an agent really

comes from the claimed sender that is specified in the mes-

sage. Otherwise, agents could fake the sender’s identity of

a message without the possibility to detect it.

Resumed shortly the mechanism and their functionality

introduced in this section are the following:

� single-side authenticated SSL: provides encryption and data in-

tegrity as well as the security to really communicate with

the Main Container and Mediator.

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0 397

� signature: provides data integrity and security that received

messages really are sent by the sender.

4.4. Availability

When searching in Wikipedia (Wikimedia Foundation) for

Availability in information systems the following statement

can be found: ‘‘The first goal of modern information security

has, in effect, become to ensure that systems are predictably

dependable in the face of all sorts of malice, and particularly

in the face of denial of service attacks.’’ To provide such

a timely dependable system we will take care of the availabil-

ity in this section.

In an open system these dreaded DoS (denial of service)

attacks partially can be prevented with a firewall. This one

has the basic task of controlling traffic between different

zones of trust, i.e. protect our local trusted network of the

university from the untrusted Internet and let only pass

traffic that is allowed by a predetermined security policy.

The common modus operandi to control the network traffic

is to close all communication protocols and ports between

the two networks. Thereafter, only some specified protocols

(i.e. TCP) and corresponding ports (i.e. 80 for http) are

opened for information exchange. If the attacks are unso-

phisticated there might be a specific signature to the traffic.

A careful examination of captured packets may reveal a trait

on which the firewall rules can be based thus preventing

damage. The installation and configuration of a firewall,

however, go beyond the aim of this paper and a well con-

figured and running firewall, protecting our system of at-

tacks from insecure networks, will be presumed in the

following.

With the distributed Multi-Agent architecture used in

EUME, it is designed to allow the access to the system from

an arbitrary network host, inside or outside the trusted

network of the university. To maintain this functionality of

outside reachability of an Multi-Agent System and enable stu-

dents and professors to connect themselves to the platform

for example from their home, the platform’s hosts outside of

the trusted network have to be able to traverse the firewall.

This, however, is not possible when using JADE. By virtue of

the utilized Internal MessageTransport Protocol Java RMI (Remote

Method Invocation; Sun Developer Network, Java remote

method inovation) the firewall cannot be crossed and thus

all type of communication between these containers is

denied.

A study of the RMI protocol and tests, to confirm the re-

sult, showed that it uses a dynamic port selection to transfer

information from one Agent Container to another. This dy-

namic behaviour, however, does not conform to the few

static ports that are opened in the firewall thus impeding

RMI to traverse it.

That is why an alternative had to be found and after some

research the solution to replace JADE with JADE-LEAP (Light

Extensible Agent Platform) (Caire, 2005) was considered as

the appropriate one. The LEAP add-on, when combined with

JADE, replaces some parts of the JADE kernel forming a modi-

fied runtime environment that can be deployed on a wide

range of devices varying from servers to Java enabled cell

phones. Though different internally, LEAP still provides the

same set of API like JADE. Furthermore, this extension of

JADE implements an own Internal Message Transport Proto-

col, called JICP (JADE Inter Container Protocol), for information

exchange between containers. In this way LEAP replaces RMI,

as the platform’s standard IMTP, with its own JICP protocol.

Normally designed for mobile devices, that among others do

not have access to RMI, LEAP allows to determine the used

communication ports with the help of this proprietary proto-

col. Thus it is possible to enable the JADE containers to com-

municate over static ports which are adapted to the firewall

configuration.

As the security concept for the EUME system, presented in

this paper, partially relies on JADE-S, this plug-in now has to

be run in combination with LEAP. Both JADE-S and LEAP in

principal should work together, thanks to the service-based

JADE kernel. However, as admitted by the JADE developers,

code which uses the two components together has never

been developed. Unfortunately, even if the contrary is stated

in the JADE-S documentation, LEAP did not work with JADE-

S. When the Security Service was activated, then remote con-

tainers could not join any more to the platform because of an

error occurring in the framework. This, however, was not the

only error that had to be eliminated by a lot of source code ex-

amination and tests until the two pieces worked properly to-

gether. In the end we accomplished it and thus availability

can be guaranteed for the system. A very nice secondary effect

is that JADE-S, apart from the use of LEAP for firewall traversal,

now is also enabled for the actual use of LEAP, i.e. for mobiles

phones.

Apart from the availability rendered possible by the fire-

wall aMain Container Replication could be activated. This allows

to start several replicated Main Containers for a single plat-

form thus also providing a higher availability in case of failure,

crash or network unavailability. JADE provides an own kernel

service for this purpose, a good tutorial is available at JADE

Board (2005) and, therefore, will not be highlighted any more

in this paper.

5. The whole concept and a use case

Now, that the security concept has been developed step by

step, it is time to give a short summary of all its defining fea-

tures and their functionality:

� user authentication: provided by JADE-Sþ LoginModuleþ
LDAP; authenticate the user; assign user as owner to all

his components.

� low level authorization: provided by JADE-S; authorization of

message exchange, components creation, AMS access.

� high level authorization: provided by Mediator; authorization

of DF access and service access based on groups.

� encryption: provided by single-authenticated IMTPoverSSL;

encryption of exchanged information; guarantees the au-

thenticity of Main Container and Mediator.

� signature: provided by JADE-S; data-integrity; security that

message really comes from sender.

� availability: provided by corrected LEAP; substitution of RMI,

as standard IMTP, with JICP to cross firewalls; main

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0398

container replication in case of failure, crash or network

unavailability.

Fig. 4 shows an example that demonstrates the step by step

appliance of the features of our security concept.

The structure results in a hybrid peer-to-peer architecture

with the Main Container as a central node providing services

for platformmanagement. The EUME layers (resource, service,

mediator, client) are marked with a grey oval. The containers

are connected to the platform through the Main Container.

The layered architecture can be recognized by the dotted lines

that symbolize the message exchange between the Agent

Containers and only exist between neighbouring layers. At

the end, the LDAP server is accessed by the Main Container

for authentication and by the Mediator Container for authori-

zation purposes.

To facilitate its understanding let us assume that the

professor ‘‘myTeacher’’ only wants to consult some informa-

tion managed by one of his teacher services. Therefore, he

starts EUME on his PDA with the activated Security Service.

This requests a username and password of the professor

and sends them over a secure channel provided by JICPo-

verSSL to the authenticated Main Container (Wooldridge,

2002). The Main Container checks this credentials against

the LDAP password store over a secure channel provided by

the LDAP LoginModule (JADE). If the authentication succeeds

the teacher’s container is added to the platform and he can

send a service request to the authenticated Mediator. This

also happens over the channel secured by JICPoverSSL

(FIPA). The Mediator executes a high level permission check

and controls if the teacher is allowed to access the type of ser-

vice it requests. Therefore, it consults the LDAP server over

a secure channel (Vila et al., 2004). In case of success the

Mediator forwards the service request to the appropriate

teacher service (EUME) which on his part for example may

ask the database for some information (JADE, 2005) before

returning the desired service to the teacher. It has to be

appended that all exchanged messages are signed by JADE-S.

6. Conclusion

By means of the Intelligent Learning Management System

called EUME, the paper discussed the issues required to add

security to an Multi-Agent System based on JADE. First of all

this paper identified a number of security requirements for

such systems. Based on this account an innovative security

concept was introduced to counteract the potential threads

and guarantee the expected behaviour of the system on

each scenario. A Java implementation of the described compo-

nents was realized and integrated into the EUME system.

In order not to reinvent thewheel the JADE-S security plug-

in for JADE was utilized to provide some basic security fea-

tures. Using them as a base, we could design and implement

a couple of additional, more complex and sophisticated secu-

rity mechanisms on top. However, due to a multitude of ana-

lyzed security lacks and shortcomings of JADE-S, a great

research effort had to be made to overcome its missing docu-

mentation and be able to fix the arising problems. Finally, by

combining the newly designed security features with some

fixed JADE-S elements, it was possible to satisfy the demands

of the security concept.

Having provided these general solutions to guarantee a se-

cure behaviour of an Intelligent LearningManagement System

in an open environment, we can concentrate on adding more

specific features. Future work could face the problem of pri-

vacy and agent mobile security in agent-supported systems.

LDAP
Server

Mediator

Main
Container

Teacher
Service

Student
Service

Classroom
Server

myStudent

myTeacher

Database
Server

1

2 3

4

5

6

Fig. 4 – Use case.

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0 399

Privacy protection requires that each individual has the power

to decide how his or her personal data is collected and used,

how it is modified, and to what extend the data can be linked.

Being an ample investigation area the exact requirementshave

tobeanalyzed indetail tobe implementedcorrectlyafterwards.

On the other hand, the security formobile agent constitutes

an interesting research area. As it seems impossible to find an

all embracing mobile security concept without the use of

trusted hardware, further research can be devoted to this part.

Acknowledgements

This work has been supported by Spanish Ministerio de

Ciencia y Tecnologı́a and Xunta de Galicia under projects

TIC2003-09400-C04-03 and PGIDIT04SIN06003PR.

r e f e r e n c e s

Caire G. Light extensible agent platform user guide, Version 3.3,
TILAB S.p.A, <http://jade.tilab.com/doc/LEAPUserGuide.pdf>;
2005.

Care G. The JADE services architecture. Utrecht: Jade Workshop.
Available from: http://jade.tilab.com/papers/2005/
JADEWorkshopAAMAS/Jade-the-services-architecture.pdf;
2005.

Dierks T, Allen C. The TLS protocol, Version 1.0, request for
comments, vol. 2246; 1999. Available from: http://rfc.sunsite.
dk/rfc/rfc2246.html; 1999.

Ethereal, Inc. Ethereal: a network protocol analyzer, <http://
www.ethereal.com>.

EUME, Ubiquitous and Multimedia Enviroment for Education,
<http://www-gsi.dec.usc.es/weume>.

FIPA, Foundation for Intelligent Physical Agents, <http://www.
fipa.org>.

JADE Board. JADE administrator’s guide, Version 3.3, TILAB S.p.A,
<http://jade.tilab.com/doc/administratorsguide.pdf>; 2005.

JADE Board. JADE Security Guide, Version 3.3, TILAB S.p.A,
<http://jade.tilab.com/doc/SecurityAdminGuide.pdf>; 2005.

JADE, Java Agent DEvelopment Framework, <http://jade.tilab.
com>.

Leach P, Newman C. Using digest authentication as a SASL
mechanism, Version 2, request for comments, vol. 2831; 2000.
Available from: http://rfc.sunsite.dk/rfc/rfc2831.html; 2000.

OpenLDAP Foundation. OpenLDAP Software 2.3 administrator’s
guide, <http://www.openldap.org/doc/admin23/>; 2005.

Sun Developer Network. Java authentication and authorization
service (JAAS) reference guide, <http://java.sun.com/j2se/1.4.
2/docs/guide/security/jaas/JAASRefGuide.html>.

Sun Developer Network. Java remote method invocation, <http://
java.sun.com/products/jdk/rmi/index.jsp>.

Sun Developer Network. Java Naming and Directory Interface
(JNDI), <http://java.sun.com/products/jndi/>.

Sun Developer Network. Security and the Java Platform, <http://
java.sun.com/security/>.

Vila X, Riera A, Sánchez E, Lama M, Barro S. Beyond keyboard and
mouse: a remote interface for a classroom management sys-
tem, Conference on education multimedia, hypermedia &
telecommunication (ED-MEDIA 2004). Switzerland: Lugano;
2004.

Vitaglione G. Java secure socket extension reference guide. Tele-
com Italia LAB. Available from: http://jade.tilab.com/doc/
tutorials/SSL-IMTP/SSL-IMTP.doc; 2004.

Wikimedia Foundation. Wikipedia<http://www.wikipedia.com>.
Wooldridge M. An introduction to Multi Agent Systems. Chi-

chester, England: John Wiley & Sons; 2002.

Dr. Xosé Vila is an Associate Professor of Computer Science. He is
amember of the Department of Electronics and Computer Science
in the University of Santiago de Compostela, Spain. His research
interest include development of intelligent systems in education
and biomedical signal processing.

Alexander Schuster is a graduate student in computer science at
the Technical University of Munich. His research interests include
security, Web Services and multiagent systems. He received his
diploma in computer science from the Technical University of
Munich.

Mr. Adolfo Riera is a consultant at GFI Informatique, an European
IT service firm, and collaborator of the Department of Electronics
and Computer Science in the University of Santiago de Compos-
tela, Spain. His research interest is centered on intelligent systems
in education.

c om p u t e r s & s e c u r i t y 2 6 (2 0 0 7) 3 9 1 – 4 0 0400

http://jade.tilab.com/doc/LEAPUserGuide.pdf
http://rfc.sunsite.dk/rfc/rfc2831.html
http://rfc.sunsite.dk/rfc/rfc2831.html
http://www.ethereal.com/
http://www.ethereal.com/
http://www.fipa.org
http://www.fipa.org
http://jade.tilab.com/doc/administratorsguide.pdf
http://jade.tilab.com/doc/SecurityAdminGuide.pdf
http://jade.tilab.com
http://jade.tilab.com
http://rfc.sunsite.dk/rfc/rfc2831.html
http://www.openldap.org/doc/admin23/
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/jaas/JAASRefGuide.html
http://java.sun.com/products/jdk/rmi/index.jsp
http://java.sun.com/products/jdk/rmi/index.jsp
http://java.sun.com/products/jndi/
http://java.sun.com/security/
http://java.sun.com/security/
http://www.wikipedia.com
http://jade.tilab.com/papers/2005/JADEWorkshopAAMAS/Jade-the-services-architecture.pdf
http://jade.tilab.com/papers/2005/JADEWorkshopAAMAS/Jade-the-services-architecture.pdf
http://jade.tilab.com/doc/tutorials/SSL-IMTP/SSL-IMTP.doc
http://jade.tilab.com/doc/tutorials/SSL-IMTP/SSL-IMTP.doc
http://www-gsi.dec.usc.es/weume

