
Science of Computer Programming 76 (2011) 37–62

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

simpA: An agent-oriented approach for programming concurrent
applications on top of Java
Alessandro Ricci ∗, Mirko Viroli, Giulio Piancastelli
DEIS, Alma Mater Studiorum, Università di Bologna, via Venezia 52, 47023 Cesena, Italy

a r t i c l e i n f o

Article history:
Received 2 April 2008
Received in revised form 24 June 2010
Accepted 27 June 2010
Available online 24 July 2010

Keywords:
Agent-oriented programming
Concurrent programming
Agents and artifacts
Multi-agent systems
Core calculi

a b s t r a c t

More and more aspects of concurrency and concurrent programming are becoming part
of mainstream programming and software engineering, due to several factors such as the
widespread availability of multi-core/parallel architectures and Internet-based systems.
This leads to the extension of mainstream object-oriented programming languages and
platforms – Java is amain example –with libraries providing fine-grainedmechanisms and
idioms to support concurrent programming, in particular for building efficient programs.
Besides this fine-grained support, a main research goal in this context is to devise higher-
level, coarse-grained abstractions that would help building concurrent programs, as pure
object-oriented abstractions help building large component-based programs. To this end,
in this paper we present simpA, a Java-based framework that provides programmers
with agent-oriented abstractions on top of the basic OO layer, as a means to organize
and structure concurrent applications. We first describe the application programming
interface (API) and annotation framework provided to Java programmers for building
simpA applications, and thenwe discuss themain features of the approach from a software
engineering point of view, by showing some programming examples. Finally, we define an
operational semantics formalizing the main aspects of this programming model.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The widespread diffusion and availability of parallel machines given by multi-core architectures is going to have a
significant impact in mainstream software development, shedding a new light on concurrency and concurrent programming
in general. Besides multi-core architectures, Internet-based computing and service-oriented architectures/Web services are
other main factors that are increasingly introducing concurrency issues in the context of a large class of applications and
systems, no longer related only to specific and narrow domains (such as high-performance scientific computing).

As noted in [50], though concurrency has been studied for about 30 years in the context of computer science fields
such as programming languages and software engineering, this research has not yet significantly impacted on mainstream
software development. As a main example, Java has been one of the first mainstream languages providing first-class native
support for multi-threading, with basic low-level concurrency mechanisms. This has been recently extended by means
of a new library added to the JDK, including classes that implement well-known and useful higher-level synchronization
mechanisms such as barriers, latches and semaphores: this framework provides a fine-grained and efficient control on
concurrent computations [32]. However, it appears increasingly important to introduce higher-level abstractions that ‘‘help
build concurrent programs, just as object-oriented abstractions help build large component-based programs’’ [50].

Accordingly, in this paper we present simpA, a Java-based framework providing programmers with an agent-oriented
abstraction layer on top of the basic OO layer, to be used as basic building block to define the architecture of concurrent

∗ Corresponding author. Tel.: +39 0547339217; fax: +39 0547339208.
E-mail addresses: a.ricci@unibo.it (A. Ricci), mirko.viroli@unibo.it (M. Viroli), giulio.piancastelli@unibo.it (G. Piancastelli).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.06.012

http://dx.doi.org/10.1016/j.scico.2010.06.012
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:a.ricci@unibo.it
mailto:mirko.viroli@unibo.it
mailto:giulio.piancastelli@unibo.it
http://dx.doi.org/10.1016/j.scico.2010.06.012

38 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

applications. Agents and multi-agent systems are considered today a main approach for building complex software
systems [26], in particular for engineering intelligent distributed systems. Here we aim at exploiting such an abstraction
level for programming concurrent – not necessarily distributed – applications.

A program in simpA can be viewed as a collection of active cooperating entities called agents, autonomously fulfilling
tasks by interacting in a common environment. The environment in simpA is composed of a set of computational entities
called artifacts, which are organized in workspaces and represent resources and tools that agents share and exploit for
executing their jobs. Agents interact both by direct communication – based on asynchronous message passing – and by
means of the environment, i.e., by exploiting artifacts designed to function as coordination tools (e.g., blackboards, data
spaces, semaphores). In particular, artifacts are the core of A&A (Agents and Artifacts), a meta-model grounding simpA that
has been recently introduced in the context of agent-oriented programming and software engineering [39].

Analogously to other existing agent platforms such as JADE [7], simpA is realized as a framework on top of the Java
language, which is conceptually independent from the OO layer: while agents and artifacts deal with the organization of
concurrency abstractions, objects (and the algorithms within) are used to define the computational data structures to be
usedwhenprogramming agents’/artifacts’ state and interaction. Themain advantagewith respect to approaches introducing
entirely new languages is that no custom compilers and virtualmachines are necessary to develop and run simpA programs:
the standard Java tools can be used. Differently from JADE, simpA also relies on the Java Annotation Framework, as do many
industrial initiatives such as the server-side framework for Java-based enterprise applications EJB 3.0,1 the Java application
programming interface (API) for XML-BasedWeb Services JAX-WS 2.0,2 and theWADEworkflow-oriented framework based
on JADE [11]. Annotations allow us to conceive Java language extensions by simply tagging classes, fields, and method
declarations of standard Java programs, thus enhancing expressiveness and flexibility while retaining the compatibility of
standard library approaches.

Themain contribution of our proposal with respect to existing ‘‘state of the art’’ approaches to concurrency – in particular
with respect to actors [1] and active objects [29] – resides in the level of abstraction introduced to design and then implement
(concurrent) programs, which we root in the concepts of agent, artifact and workspace. Generally speaking, the agent
approach promotes a decentralized mindset in programming: that is, a way of solving problems and then designing systems
based on decentralization of control and of the consequent interaction and coordination of the autonomous parts resulting
from decentralization, the benefits and power of this approach being nicely summarized originally by Resnick in his well-
known book [42]. Decentralization of control is at the very heart of concurrent programming, and actually is a basic
ingredient also of actor-based and process-based approaches (like Erlang [5,28], for instance). Then the issue that we aim
at tackling with simpA is: what kind of core abstractions can be devised to adopt and promote a decentralized mindset in
computer programming? We believe that such abstractions should (i) hide as much as possible the low-level mechanisms
typically found in multi-threaded programming (e.g. semaphores), and then (ii) help in reducing the gap from design to
implementation. In this perspective, agents and artifact-based environment abstractions as introduced with simpA both
make it possible to abstract completely from low-level issues related to multi-threading and synchronization, and help to
bridge the gap between design and implementation so that their features can find a direct coding counterpart.

In simpA, agents can be used to directly implement entities that pro-actively fulfill tasks, while artifacts implement those
components of the system which – instead of being effectively modeled as task-oriented entities – act as resources that are
shared and used to achieve those tasks. Artifacts can span different scales of complexity, from a simple counter, to a complex
data repository (e.g., a database). Artifacts can also beused to effectivelymodel and implement tools to support indirect agent
communication and coordination, such as blackboards and tuple spaces. This is a main difference with respect to actor-like
approaches, which provide a single abstraction (the actor) to model every component of the system, and a single model
(asynchronous message passing) for interaction.

In this paper, we present the simpA framework (Section 2), discuss its key aspects and provide examples of application
(Section 3), formalize the operational semantics of a subset of simpA (Section 4) with the primary goal of clarifying its most
important and subtle aspects, and finally discuss related works (Section 5). This paper develops on the following existing
works: in [44] the simpA annotation framework is presented first, in [47] we motivated the agent-oriented abstractions
used in simpA, while in [45] an earlier version of the operational semantics is presented. The present paper consolidates
suchworks including amore thorough description of simpA, as well as new andmore articulated examples. Also, we include
a formalization of a larger subset of the language, tackling crucial aspects of agent and artifact abstract machines.

2. simpA overview

In this section we present an overview of the simpA framework and its programming model. We begin with the
presentation of its main concepts (Section 2.1), then agent programming (Section 2.2), artifact programming (Section 2.3),
and finally the details of agent–artifact interaction (Section 2.4). The simpA technology is open source:3 the source code
presented in the paper as well as other more complex examples can be found in the simpA distribution.

1 JSR 220, http://jcp.org/en/jsr/detail?id=220.
2 JSR 224, http://jcp.org/en/jsr/detail?id=224.
3 http://simpa.sourceforge.net.

http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=220
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=224
http://simpa.sourceforge.net
http://simpa.sourceforge.net
http://simpa.sourceforge.net
http://simpa.sourceforge.net

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 39

2.1. Main concepts

Agents and artifacts are the basic coarse-grained building blocks to structure an application in simpA: a simpA application
(system) is viewed as a collection of agentsworking in one ormultipleworkspaces, each containing a dynamic set of artifacts,
representing resources and tools that agents create, share and use at runtime. Agents and artifacts have a logical name –
specified by the programmer at creation time – which must be unique inside the workspace, and have a unique system
identifier generated by the simpA platform.

Agent — Agents are autonomous components interacting with their environment. Autonomous here means that they
fully encapsulate the control of their behavior, which is directed towards the achievement of some task(s), as described
in the agent program. Agents do not have an interface like objects: the interaction with the environment is realized by
means of effectors (to execute actions) and sensors (to collect events from the environment). Agent actions in simpA account
for sending messages to other agents4 and for interacting with artifacts, which are the building blocks composing the
environment.

Artifacts—Dually to the agent abstraction, an artifact is a function-oriented and non-autonomous component, designed
to provide some functionality that can be exploited by agents, and encapsulating the low-level mechanisms required to
avoid interferences during their concurrent use. The functionality of an artifact is structured in terms of operations, exposed
altogether in the so-called artifact’s usage interface. An agent executes an operation by acting over the usage interface, so
as to trigger the execution of a specific operation. The execution of an operation inside the artifact typically results in an
update of the artifact’s inner state and in the generation of one or multiple observable events, i.e., signals carrying some
data that can be perceived by the agent that is using the artifact and by the agents that are currently observing the artifact.
Besides generating observable events when executing operations, artifacts can exhibit an observable state composed of
a dynamic set of properties whose value can be inspected by agents without executing operations. Therefore, artifacts
represent controllable and observable devices that agents can use (i) by acting on their usage interface, (ii) by perceiving
observable events generated by operation executions and (iii) by observing the value of their observable properties. Also,
artifacts can be linked together so as to compose connected environments — though this feature is not further discussed in
this paper for it is not part of the core of the approach.

Workspaces — Workspaces are logical containers, used to structure the overall environment where the agents play,
and representing loci of activities. The environment can be distributed among different network nodes, each node hosting
one or multiple workspaces — a single workspace cannot be distributed among multiple nodes. Agents can dynamically
join and concurrently work in multiple workspaces, possibly in distinct nodes. By default, a simpA application has a single
workspace, called default (and this is the main setting we consider in this paper): other workspaces can be created at
runtime by means of a dedicated API.

From an implementation viewpoint, a simpA program is composed of a set of agent and artifact templates, defining
the structure and behavior of specific kinds of agent/artifact, and a set of (Java) classes, representing the basic data types
used in agent/artifact definition. Agent and artifact templates are implemented as annotated Java classes, using a one-to-
one mapping: an agent template is defined by a single class, and the same holds for artifact templates. The entry point
of the program is one boot agent, whose name and template must be specified when launching the program itself either
by means of a standalone launcher tool or by means of the simpA API (helper method launchApplication in class
alice.simpa.SIMPALauncher). That method creates a workspace where the application agents and artifacts will be
initially contained along with the spawned boot agent.

2.2. Programming agents

From an abstract point of view, an agent in simpA can be thought of as an interpreter of a program, specified by the agent
designer, which contains the description of the activities that the agent has to execute in order to fulfill its tasks. The agent
program is described in the agent template,which is implemented as a class extending thealice.simpa.Agentbase class.

2.2.1. Defining agent activities
Activities described in the agent program can be of two basic types:

• atomic activities, which are single blocks of instructions (actions), possibly containing actions to interact with the
environment;

• structured activities, which are a composition of sub-activities.

By default, an agent program must define at least one activity called main, either atomic or structured, that is the first
activity executed by the interpreter.

Atomic activities are declared in the agent program as methods with the @ACTIVITY annotation, with void return type
and no input parameters. The body of the method specifies the computational behavior of the agent corresponding to the
accomplishment of the activity. Fig. 1(top-left) shows the source code of a HelloAgent, with a single activity in which the

4 Inter-agent communication based on asynchronous message passing is not further discussed in this paper, since it is not a central feature of the simpA
approach: interested readers can find more information about this aspect in simpA documentation.

40 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

public class HelloAgent extends Agent {
@ACTIVITY void main() {

ArtifactId cons = lookupArtifact("console");
use(cons, new Op("println", "Hello, world!"));

}}

public class MyAgent extends Agent {
@ACTIVITY_WITH_AGENDA({

@TODO(activity="a"),
@TODO(activity="b", pre="completed(a)"),
@TODO(activity="c", pre="completed(a)"),
@TODO(activity="d", pre="completed(b),

completed(c)")
}) void main() {}

@ACTIVITY void a() {
log("completed a");

}

@ACTIVITY void b() {
waitFor(2500);
log("completed b");

}

@ACTIVITY void c() {
waitFor(1500);
log("completed c");

}

@ACTIVITY void d() {
log("completed d");

}
}

public class MyAgent extends Agent {
@ACTIVITY_WITH_AGENDA({

@TODO(activity="a"),
@TODO(activity="b",

pre="completed(a)"),
@TODO(activity="c",

pre="completed(a)"),
@TODO(activity="d",

pre="memo(y(_,_)),memo(z(_))")
}) void main() {}

@ACTIVITY void a() {
memo("x", 1);

}

@ACTIVITY void b() {
int v = getMemo("x").intValue(0);
memo("y", v+1, v-1);

}

@ACTIVITY void c() {
int v = getMemo("x").intValue(0);

memo("z", v*5);
}

@ACTIVITY void d() {
MemoVar y0 = new MemoVar();
MemoVar y1 = new MemoVar();
readMemo("y", y0, y1);

int z = getMemo("z").intValue(0);
int w = z *(y0.intValue() +

y1.intValue());
log("the result is: " + w);

}
}

Fig. 1. (left) An example of agents with a single atomic main activity (top) and with a structured activity (bottom). (right) An agent using memos.

agent uses the console artifact – which is available in each workspace by default – to print the ‘‘Hello, world!’’ message in
standard output. Method local variables (like cons in the example) are used to encode data structures representing the local
memory related to the specific activity. Agent actions are supported as protected final methods of the Agent class (in the
example lookupArtifact and use, described in detail in Section 2.4): the return value of the method represents the
action feedback, which is a value which depends on the specific action and contains a description of the successful execution
of the action; action failure results in an exception.

Structured activities are basically formed by an atomic activity equipped with an agenda: the agenda specifies the set
of sub-activities composing the activity, referred to as todo of the agenda. Each todo specifies the name of the sub-activity
to execute, and optionally a precondition. When a structured activity is executed, each todo in the agenda is executed as
soon as its precondition holds. Therefore, multiple sub-activities can be executed concurrently in the context of the same
(super) activity. A structured activity is declared in simpA by a method with an @ACTIVITY_WITH_AGENDA annotation,
containing todo descriptions as a list of @TODO annotations, each specifying the name and precondition. Such preconditions
are expressed in a pre property as a boolean expression, with and/or/not logical operators (represented by ‘‘,’’, ‘‘;’’, ‘‘!’’
symbols, respectively) over a basic set of predefined predicates. Essentially, such predicates specify conditions over the
current state of the activity agenda (whether the state of some sub-activities is ‘‘started’’, ‘‘completed’’, or ‘‘aborted’’) or
check the availability of some data in the agent memory (calledmemo space, described in the next subsection).

As a simple example, the agent reported in Fig. 1(bottom-left) has amain activity structured around an agenda composed
of four todo:a,b,c, andd. Activitya ismeant to be executed as soon as themain activity starts, activitiesb andc are executed
in parallel as soon as a is completed, and finally d is executed when both b and c have completed.

2.2.2. Agent memory
Agent memory is realized as a private associative store called memo space, where the agent can dynamically attach, or

associatively read, retrieve, and remove chunks of information called memo. A memo is a tuple, identified by a label and
characterized by an ordered set of arguments, either bound or not to some data object; in the latter case the memo is said
to be partially specified. Instance fields in agent classes are not meant to be used: the memo space is the only data structure
adopted to represent agent state, shared by the (sub-)activities.

Each agent is provided with internal actions to atomically and associatively access and manipulate the memo space:
memo is used to create a newmemo with a specific label and a variable number of arguments (which can be null or bound
to an object instance of some class); getMemo and delMemo to get/remove amemowith the specified label; readMemo and
removeMemo to read/remove a memo matching the specified values, with the possibility to specify both concrete values
and variables, as instance of the class MemoVar.

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 41

public class MyAgent extends Agent {
@ACTIVITY_WITH_AGENDA({

@TODO(activity="getTaskTodo", persistent=true),
@TODO(activity="doTask", pre="memo(task_todo)",

persistent=true)
}) void main(){}

@ACTIVITY void getTaskTodo() {
// wait for a task todo
memo("task_todo");

}

@ACTIVITY void doTask() {
removeMemo("task_todo");
// do task

}
}

public class MyAgent extends Agent {
@ACTIVITY_WITH_AGENDA({

@TODO(activity="detectStop"),
@TODO(activity="getTaskTodo",
persistent_until="memo(stopped)"),

...
}) void main(){}

@ACTIVITY void detectStop() {
...
memo("stopped");

}
...

}

Fig. 2. (left) An example of agent with cyclic behaviors. (right) Using a condition to specify the todo persistence.

To show how the memo space can be used, we extend the previous example by making each activity exploit the memo
actions just described (Fig. 1, right). In the example, the agent attaches and retrieves some memos in the memo space, to
share data among activities and store the result of its work. In particular, in activity a the agent stores a memo x(1); both
in b and c the agent reads the memo labelled with x, and uses its content to create respectively a new memo y(2,0) and
a memo z(5); finally, in activity d, the agent uses both the memos y and z to compute a new value, logged in output.

A memo can also be used to help the coordination of sub-activities, by exploiting the memo predicate in the specification
of the precondition in the agenda todo: this is used to test the presence of a specific memo in the memo space and also
to associatively retrieve its value, through the use of variables (represented by symbols starting with an underscore or an
uppercase letter). In the example, while activities b and c are triggered by the completion of a, activity d starts as soon as
both a memo matching the template y(_,_) and a memo matching the template z(_) are found. It is worth remarking
that precondition evaluation and matching are not meant to alter the content of memos in the memo space. In particular,
matching simply checks if there exists a memo whose arguments are equal – using the equal method defined in Object
class – to the value of the ground arguments specified in the template. Then, variables possibly specified in the template are
bound to the corresponding arguments of the selected memo.

Finally, note that different activities can change/inspect the memo space concurrently: nevertheless, no race condition
can occur in individualmemo inspection/update since thememo-related actions are atomic. Races can occur, however, in the
case of wrongly designed agendas, including the concurrent execution of multiple sub-activities doing multiple operations
on the samememo(s). This happens when the presence of dependencies among sub-activities is not recognized and/or pre-
conditions are wrongly specified. Accordingly, we believe that the automated analysis of preconditions and memo space
access inside activities can help in finding these kinds of error — which is a subject of our future works.

Concerning deadlocks, note that actions to read/retrieve memos are not blocking: they simply fail if no memo is found,
so no deadlocks can occur.

2.2.3. Agents with cyclic behavior
Agents are often used to perform repetitive tasks, such as continuously monitoring resources and executing actions as

soon as a condition is verified. A direct support for this kind of tasks is provided by persistent todos. A todo can be specified
to be persistent by setting its boolean persistent property to true inside the annotation: in that case, once the todo has
been executed, it is re-inserted in the agenda so as to be possibly executed again — that is, when its precondition will be
positively evaluated again. An example is shown in Fig. 2(left): by means of persistent todos getTaskTodo and doTask
in the main activity, the agent repeatedly acquires a new task to be executed and serves it concurrently with the other
activities in execution.

For articulated activities, instead of the simple persistent property, two properties can be specified, persistent_if
and persistent_until. The former specifies the condition that must hold (when the related activity completes) to
consider the todo persistent; dually, the latter specifies the condition until which the todo is considered persistent. An
example of usage of this feature is shown in Fig. 2(right). In this case the getTaskTodo task is repeated until a memo
stopped is found, which is meant to be inserted by the detectStop activity.

2.3. Programming artifacts

The structure and behavior of an artifact is described in the artifact template, which is implemented as a class extending
the alice.cartago.Artifact base class.5

5 cartago is the nameof the separate platform supporting artifact-based environments: simpA extendsCArtAgO by providing support for programming
and executing the agents living in such environments.

42 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

public class Counter extends Artifact {

@OPERATION void init(){
defineObsProperty("count",0);

}

@OPERATION void inc(){
int count = getObsProperty("count").intValue();
updateObsProperty("count",count+1);

}
}

public class Counter extends Artifact {
int count;

@OPERATION void init(){
count = 0;

}

@OPERATION void inc(){
count++;
signal("count_incremented",count);

}
}

Fig. 3. (left) A simple counter artifact example. (right) An alternative version of the counter without observable properties, generating observable events
only.

2.3.1. Artifact structure and behavior
Artifact structure is defined by: (i) a fixed set of variables encoding the non-observable inner state of the artifact, directly

implemented by the instance fields of the class; and (ii) a dynamic set of observable properties, which are added/removed
and their value inspected/changed by means of a proper set of primitives implemented as protected methods of the
alice.cartago.Artifact base class.

Artifact behavior is defined by a set of operations, whose execution is triggered by agents through the usage interface.
Operations can be atomic or structured. Atomic operations are characterized by a single block of instructions (called the
operation step), which is executed atomically as soon as the operation is triggered, and are declared by methods with void
return type and annotation @OPERATION. The name and parameters of such methods declare the name and parameters of
the operation that the agent must specify in order to trigger its execution. Structured operations involve the execution of
multiple operation steps and – as will be detailed in Section 2.3.3 – are useful in implementing long-term controllable
computations, typically useful when coding coordination artifacts. At a given time, only one operation step can be in
execution inside the artifact, analogously to entries inmonitors; however, multiple operations can be in execution bymeans
of step interleaving. Among the operations, init is executed by default when an artifact is instantiated, playing the role of
constructors in OO programming.

As a first example, we consider a counter artifact, which displays an integer value and provides means to increment it
(see Fig. 3, left): to this end, the artifact has a single observable property called count displaying the current value of the
counter, and a single usage interface control called inc, used to increment the counter. An example application for this
artifact could be in allowing a team of agents to jointly keep track of the number of hits found when searching for Web
pages that contain some information. Beside inc and init operations, observable properties are defined (typically during
artifact initialization) by means of the defineObsProperty primitive, specifying the property name and initial value.
The observable property count is read and updated by the execution of the inc operation through available primitives
(getObsProperty, updateObsProperty). In this case, the artifact has no inner state variables.

In this minimal example, no observable events are explicitly generated by artifact operations: however, some observable
events are generated by default; in particular, op_exec_started(OpName) is generated as soon as the operation started,
op_exec_completed(OpName) as soon as the operation completed, and an event PropName (PropValue) each time
an observable property whose label is PropName is updated (count in this case) with a new value. A variant of the counter
without observable properties, purely based on observable events, is shown in Fig. 3(right). Thesignalprimitive is supplied
for generating events (signals) that can be observed by the agent using the artifact – i.e., the agent that executed the operation
– and by all the agents that are observing it. An observable event is characterized by a label describing its kind and possibly
an object representing its content. For this counter, an observable event count_incremented(C) is explicitly generated
in the inc operation.

As will be clarified in Section 2.4.2, observable events generated by an artifact are atomically notified to agent sensors,
which are kinds of private buffers that agents use to manage perceptions. In particular, an observable event is notified to
(a) the sensor possibly specified by the agent that executed the operation causing the generation of the event (by means
of a use action, described in Section 2.4.1), and to (b) the sensors specified by all agents which explicitly manifested
their intention to observe the artifact (by means of a focus action, Section 2.4.3). So, signals of artifacts which are not
observed by any agents, andwhich are generated by an operation executed by an agent without specifying a sensor, are lost.
Conversely, signals collected in sensors are piled up until agents retrieve them bymeans of a proper internal action (sense,
Section 2.4.2).

2.3.2. Usage interface controls with guards
For each usage interface control, a guard can be specified: that is, a condition that must be true in order to actually enable

the control. By default, the control is enabled: a guard then can be useful to constrain the availability of the control to a
dynamic condition related to the internal state of the artifact. If a control is enabled, then it can be successfully triggered by
a use action of an agent; otherwise, the use action is suspended (more details on this can be found in Section 2.4). Guards are
implemented as booleanmethods with the @GUARD annotation and are associated to a usage interface control by specifying
the attribute guard in the @OPERATION annotation triggered by the control.

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 43

public class BoundedBuffer<T> extends Artifact {
LinkedList<T> items;
int nmax;

@OPERATION void init(int nmax) {
items = new LinkedList<T>();
this.nmax = nmax;

}

@OPERATION(guard="notFull") void put(T obj) {
items.add(obj);
signal("item_inserted");

}

@OPERATION(guard="notEmpty") void get() {
T item = items.removeFirst();
signal("new_item_available", item);

}

@GUARD boolean notEmpty() {
return items.size() > 0;

}

@GUARD boolean notFull(T obj) {
return items.size() < nmax;

}
}

public class Barrier extends Artifact {
int nmax;
int count;

@OPERATION void init(int nmax) {
this.nmax = nmax;
count = 0;

}

@OPERATION void await() {
count++;
nextStep("awaitFinished");

}

@OPSTEP(guard="barrierPointAchieved")
void awaitFinished() {

signal("barrier_point_achieved");
count = 0;

}

@GUARD boolean barrierPointAchieved() {
return count >= nmax;

}
}

Fig. 4. A bounded buffer (left) and a barrier (right) implemented as artifacts.

As a simple example, Fig. 4(left) shows the implementation of a bounded buffer artifact, to be used in producer–consumer
architectures: the put operation control is enabled only if the buffer is not full, and dually the get operation control is
enabled only if the buffer is not empty.

A guard is called passing the sameparameters of the related guarded usage interface control or operation step. Thismakes
it possible to specify guard conditions including also the value of actual parameters, besides the state of the artifact.

2.3.3. Structured operations
In the previous examples, artifact operations were atomic, namely, composed of a single step. However, since artifacts

can execute only one step at a time, this would result in a rather inflexible programming environment for concurrency
abstractions. Structured operations can hence be implemented as a sequence of operation steps, allowing the concurrent
execution of long multiple-structured operations by interleaving the guarded execution of these steps.

Operation steps are implemented by methods annotated with @OPSTEP, and can be triggered (enabled) by means of the
nextStep primitive, specifying the name of the step and a (possibly empty) list of parameters. When no step is executing,
a triggered step whose guard evaluates to true is selected and executed — the other steps triggered in the context of the
same operation are dropped and never executed.

As a simple example, consider theBarrier artifact shown in Fig. 4(right). The operationawait is composedof two steps:
the first is triggeredwith the invocation of the operation, while the second, named awaitFinished, is triggered by the first
through the nextStep primitive. Once triggered, awaitFinished is executed as soon as its barrierPointAchieved
guard is evaluated to true, that is, only when the artifact variable count reaches a value greater or equal to the nmax value,
specified as a parameter in artifact instantiation. Each time await is triggered, count is incremented: so the condition will
not hold until await is triggered nmax times. At that point, awaitFinished is executed and await can then complete,
generating the barrier_point_achieved observable event.

2.4. Agent–artifact interaction model

2.4.1. Using artifacts
Agents can interact with an artifact by means of the use action (see Fig. 5), specifying the selected usage interface

control and related required parameters. If the use action succeeds (the control’s guard is positively evaluated), then a new
instance of the operation linked to the operation control starts its execution inside the artifact. The execution of the operation
eventually generates a stream of observable events that may be perceived both by the agent that performed the use action
and by all the agents that are observing the artifact — as described below.

A concrete example of use is shown in Fig. 6(left): a CountUser agent first creates a Counter artifact (whose template
has been described in Fig. 3), then uses the artifact by executing twice the inc operation by means of the use action, and
finally it waits to perceive the count_value event generated by the artifact by means of the sense action, discussed in
the next subsection.

44 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

Fig. 5. An agent using an artifact, first acting on the usage interface and then perceiving observable events.

public class CountUser extends Agent {

@ACTIVITY void main() {

ArtifactId countId =
makeArtifact("myCount","Counter");

use(countId, new Op("inc"));

SensorId s = linkDefaultSensor();
use(countId, new Op("inc"), s);

try {
Perception p =

sense(s, "count_incremented", 1000);
long value = (Long) p.getContent();

ArtifactId cons = lookupArtifact("console");
use(cons,println("Count value: "+value);

} catch (NoPerceptionException e) {
log("No perceptions within a second.");

}
}

}

public class Observer extends Agent {
@ACTIVITY_WITH_AGENDA({

@TODO(activity="setup"),
@TODO(activity="observe",

pre="completed(setup)",
persistent_until="memo(ncounts(5))")

@TODO(activity="finalise",
pre="memo(ncounts(5))")

}) void main(){}

@ACTIVITY void setup() {
memo(new Memo("ncounts",0));
ArtifactId c =

lookupArtifact("myCount");
SensorId s = getSensor("s0");
focus(c, s);

}

@ACTIVITY void observe() {
SensorId s = getSensor("s0");
sense(s, "count_incremented");
log("new count observed");
Memo n = delMemo("ncounts");
int newVal = n.intValue(0)+1;
memo(new Memo("ncounts",newVal));

}

@ACTIVITY void finalise() {
ArtifactId c =

lookupArtifact("myCount");
stopFocussing(c);

}
}

Fig. 6. (left) An agent interacting with an Counter artifact by means of use and sense action. (right) An agent observing the same artifact by means of
focus action.

The use action is executed specifying the identifier of the target artifact, the usage interface control to select (i.e., the
operation to be triggered) and its list of parameters. Optionally, one can specify also the identifier of the sensor used to
collect observable events (details in next subsection), and a timeout. In the example, the first occurrence of use triggers
the execution of the inc operation, without specifying any sensor to collect observable events generated by the operation
execution. The second occurrence triggers inc again by this time specifying a sensor (identifier).

The execution of a use action involves a synchronous interaction between the agent and the artifact: action success
means that the operation assigned to the control has started its execution. This contrasts with standard agent–agent
communication, which is based, instead, on fully asynchronous communication. If the usage interface control is part of
the usage interface but currently is not available (enabled), the use action is suspended for a maximum time equal to the
specified timeout, then it fails. So a use action is suspendedwhen either the artifact is executing some other operation (step)
– in that case, all usage interface controls are temporarily disabled – or the guard of an operation control is not satisfied.
Then, the execution of operations is completely asynchronous with respect to agent activities: the use action does not
involve any transfer of control as happens in the case of remote procedure call or method invocation in procedure-based or
object-oriented systems.

The makeArtifact and lookupArtifact actions that appear in the example are provided respectively to instantiate
artifacts – specifying the template and the set of parameters needed for its instantiation (which must be compatible with
the parameters specified in the init artifact operation) – and retrieve the identifier of an existing artifact in the workspace,
given its name. Actually, artifact instantiation and discovery are realized by means of artifact use, through a factory artifact
and a registry artifact, available in each workspace: so the actions makeArtifact and lookupArtifact are not primitive
actions but auxiliary actions hiding the interaction based on use and sense actions with those artifacts.

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 45

Fig. 7. An agent observing an artifact, by means of a focus action and observeProperty action.

2.4.2. Perceiving observable events
As seen in previous example, to perceive observable events the agent executing a use action can specify a sensor, where

an artifact’s observable eventswill be collected as soon as they are generated by the artifact. Then, asense action is provided
to fetch events from the sensor as soon as needed, possibly specifying filters that match one or more events in the sensor’s
queue (for data-driven perception) and a timeout.

In the example in Fig. 6(left), the agent waits to perceive a count_incremented event, with a time-out of 1000 ms.
If sense is executed successfully, the event is removed from the sensor and a perception related to that event –
represented by an object of class Perception – is returned. If no perception is sensed for the duration of time specified, a
NoPerceptionException is thrown.

Sensors play the role of perceptual memory that is explicitly manageable by the agent: agents can use sensors to
organize in a flexible way the processing of events, which can be possibly generated by multiple different artifacts and
that an agent can be using for different, even concurrent activities. An agent can link (and unlink) any number of sensors,
according to the strategy chosen for perceiving events, by means of specific actions: linkSensor, unlinkSensor, and
linkDefaultSensor. The latter operation links a new sensor of the default type, which provides a FIFO policy to manage
collected events. Operation getSensor retrieves the identifier of a sensor given its name (and possibly creates a new one,
if no sensor with such a name exists).

2.4.3. Observation
Besides use, observation is the other sort of agent–artifact interaction, which accounts for perceiving observable

properties and events of an artifact without using it, i.e., without acting on its usage interface as in the previous case. To
this end, two basic actions are provided, observeProperty and focus.

The observeProperty action simply makes it possible to read the current value of a specific observable property,
which is returned directly as feedback of the action. The focus action is more complex (see Fig. 7): by executing a focus
on a specific artifact (specifying a sensor like in the use case), an agent is notified of all the observable events that the
artifact will generate from that moment, even if it was another agent that actually caused them—much like event listening
in Java. All the observable events generated by the artifact are detected by the sensor and fetched by the agent through a
sense action whenever it decides to do so. Action stopFocus is provided to stop the observation. An example of an agent
using focus and stopFocus is shown in Fig. 6(right): the Observer agent continuously observes a Counter artifact and
prints a message on the console each time a count_incremented event is perceived, for five times before stopping the
observations.

It is worth noting that the focus and observeProperty actions do not have any effect on the artifact’s state and
behavior, the only changes and effects are on the agent side. By contrast, in purely agent-based and actor-based scenarios,
for an agent to observe an information belonging to another agent, an explicit message-based request–response interaction
protocol between the two agents must be used, with both agents necessarily executing some actions for carrying on the
protocol.

3. Programming examples and discussion

The main objective of simpA is to simplify the design and development of concurrent programs: in this section we focus
on the main features of the approach related to this aspect.

3.1. Abstraction and separation of concerns

The level of abstraction underlying the simpA approach is meant to ease the design of the application and then to
reduce the gap between this design and the implementation. At the design level, by adopting a task-oriented approach
as typically promoted, for example, by agent-oriented methodologies [24], the task-oriented and function-oriented parts of
the system are identified, leading to the definition of the agents and artifacts as represented by the A&Amodel, and then to
the implementation in simpA. Tasks are units of work to pro-actively achieve or maintain some kind of goal, by executing

46 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

some set of actions, possibly affecting different parts of a system. By adopting simpA, tasks are assigned to agents, which
have then the responsibility of their execution and control; the description of tasks drives the definition of agent activities
and related agenda. Functions can be seen as units of functionality that can be exploited as basic actions to perform tasks.
In simpA, functions are directly encapsulated into artifacts, which represent the means – resources and tools – that agents
share and use to perform the tasks.

It is worth remarking here on the conceptual distinction between agents and artifacts. On the one hand, agents are
autonomous entities; that is, they fully encapsulate a state, a computational behavior (structured in activities) and the control
over it, lacking any interface to govern such activities from the outside. On the other hand, artifacts – as in the case of objects
in purely OO approaches – encapsulate a state and a computational behavior, but not the control over this behavior, which
is governed instead from the outside through the artifact’s exposed usage interface. Inside agents, activities are scheduled
and executed according to their own internal agenda(s), specified by the agent programmer. Inside artifacts, operations are
triggered and executed as a result of agents’ use actions. We believe that this distinction improves the separation of concerns
in developing (concurrent) decentralized programs: in our case a separation of concerns into agents and the environment
(composed of artifacts), the former encapsulating control and the latter being controlled by the former.

3.2. Modularity

The simpA approach aims at providing general means to modularize the behavior of agents (as controlling entities) and
artifacts (as controlled entities).

3.2.1. Modularity in agents
The hierarchical model of activities introduced in simpA is meant to mirror the decomposition of a task to execute in

subparts, typically conducted at the design stage, with the notion of agenda and todo used to specify in a declarative way
the glue among sub-activities. We argue that this is crucial when non-trivial active behaviors are concerned. In simpA, the
hierarchical model of activities on the one hand, and the declarative model to specify their dependencies on the other hand,
provide a discipline in that direction, improving the level ofmodularity and encapsulation of active behaviors, which is quite
important as soon as agents with articulated tasks are considered.

3.2.2. Modularity in artifacts
Concerning artifacts, the model adopted in simpA makes it possible to specify complex functionalities (operations)

without the need to explicitly use lower-level Java mechanisms such as synchronized blocks or wait/notify synchronization
primitives. This simplifies – among the others – the implementation of coordination artifacts, which are artifacts providing
coordination functionalities to agents. A simple example is the barrier, described in Section 2.3.3. A more complex example
is a tuple space [18], shown in Fig. 8(left), used by simple master agents and worker agents shown in Fig. 8(right): the former
allocates task to be executed (represented by task_todo tuples) and retrieves the results (represented by task_result
tuples); the latter gets the tasks to be executed and provides the results.

On the one hand, mutual exclusion in accessing and modifying an artifact’s inner state is guaranteed by having only one
operation step executed at a time—non-blocking, atomic accesses to the artifact state are to be encapsulated in a single step.
On the other hand, dependencies between operations can be explicitly taken into account and expressed declaratively by
defining operation (step) guards. In the tuple space example, for instance, the basic synchronizationmechanism provided by
blocking operations such as in is simply realized by an operation composed of two steps: the second one –which completes
the operation execution by removing the tuple – is executed only when a tuple matching the template is found in the tuple
set (as specified by the foundMatch guard).

It is worth remarking here that the orthogonality with the OO model makes it possible to integrate the agent (artifact)
layer and the OO layer in a quite clean way: in the example, the data structures TupleSet, Tuple and TupleTemplate
used to implement the SimpleTupleSpace artifact do not need any concurrency mechanism, but are rather meant to
provide efficient implementation of purely algorithmic data structures involved in tuple management.

3.3. Decentralization and coordination

Besides the individual component level, the approach has been conceived to simplify the development of systems
composed of multiple agents that work together, coordinating their activities by exploiting suitable set of artifacts. The
features of the programming model – in particular of the agent and environment (artifacts) abstraction – are meant to
promote the design and development of decentralized solutions to problems, from both conceptual and pragmatical points
of view.

As an example, here we consider the basic well-known dining philosopher problem. The problem is about a set of N
philosophers (typically 5) sharing N forks for eating spaghetti, sitting at a round table — hence, each philosopher shares
his/her left and right forks with one friend philosopher on the left and one on the right. The goal of each philosopher is to
live a joyful life, interleaving thinking activity, for which they actually do not need any resources, with eating activity, for
which they need to take and use both the forks. The goal of the overall philosophers group is to share the forks fruitfully,
and coordinate the access to such resources so as to avoid forms of deadlock or starvation of individual philosophers — e.g.,

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 47

public class SimpleTupleSpace
extends Artifact {

TupleSet tset;

@OPERATION void init(){
tset = new TupleSet();

}

@OPERATION void out(Tuple t){
tset.add(t);

}

@OPERATION void in(TupleTemplate tt){
Tuple t = tset.removeMatching(tt);
if (t!=null){

signal("tuple",t);
} else {

nextStep("inDone",tt);
}

}

@OPSTEP(guard="foundMatch")
void inDone(TupleTemplate tt){

Tuple t = tset.removeMatching(tt);
signal("tuple",t);

}

@OPERATION void rd(TupleTemplate tt){
Tuple t = tset.removeMatching(tt);
if (t!=null){

signal("tuple",t);
} else {

nextStep("rdDone",tt);
}

}

@OPSTEP(guard="foundMatch")
void rdDone(TupleTemplate tt){

Tuple t = tset.readMatching(tt);
signal("tuple",t);

}

@GUARD boolean foundMatch(TupleTemplate tt){
return tset.hasTupleMatching(tt);

}
}

public class Master extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="assigningTask",

persistent=true),
@TODO(activity="gettingResult",

persistent=true),
}) void main(){}

@ACTIVITY void assigningTask() {
ArtifactId bag = lookupArtifact("bag");
SensorId sid = getSensor("s0");
double value = generateTask();
Tuple todo = new Tuple("task_todo",

value);
use(bag, new Op("out", todo));
TupleTemplate result =

new TupleTemplate("task_result",
value,null);

use(bag, new Op("in", result),sid);
}

@ACTIVITY void gettingResult() {
SensorId sid = getSensor("s0");
Perception p = sense(sid,"tuple");
Tuple t = (Tuple)p.getContent(0);
log("got result: "+t.doubleContent(0)+

" ==> "+t.doubleContent(1));
}

private double generateTask(){...}
}

public class Worker extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="consuming",

persistent=true)
}) void main(){}

@ACTIVITY void consuming() {
SensorId sid = getSensor("s0");
ArtifactId bag = lookupArtifact("bag");
TupleTemplate todo =

new TupleTemplate("task_todo",
(Object)null));

use(bag, new Op("in", todo, sid);
Perception p = sense(sid,"tuple");

Tuple t = (Tuple)p.getContent(0);
double value = t.doubleContent(0);
double result = Math.sqrt(value);
Tuple res = new Tuple("task_result",

value,result);
use(bag, new Op("out", res));

}
}

Fig. 8. (left) Implementation of a simple tuple space as an artifact. Tuple, TupleTemplate and TupleSet – not reported – are flat data types, with no
synchronization mechanisms, implementing tuples, tuple templates (providing a matching operation on tuples) and the collection managing the tuples.
(right) Implementation of simple master and worker agents in a bag-of-task architecture, interacting by means of the tuple space.

when all philosophers have one fork each. The social constraint of the group is that a fork cannot be used simultaneously by
more than one philosopher.

A natural way to devise a solution using simpA is to use agents to implement the philosophers and suitable designed
artifacts to model the resources used by the philosophers. A first solution – similar to solutions based on monitors –
accounts for using a single table artifact functioning as resource (fork) manager and coordination medium, encapsulating
the coordination policy that handles mutual exclusion for the access of individual forks and that avoids deadlock situations.
Clearly such a solution suffers from a centralization problem, due to the single table artifact.

A fully decentralized solution can be easily conceived by replacing the table with a proper set of independent artifacts,
each encapsulating a piece of functionality related to resource access and coordination, and exploiting the basic properties
of artifacts use and observation.6

6 Actually, different kinds of decentralized solutions can be devised for the dining philosopher problem: the one adopted here is not the simplest, but
one of the most effective in showing how to exploit basic agent and artifact features for realizing decentralized coordination.

48 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

public class Fork extends Artifact {
private boolean isAvail;
@OPERATION void init(){

isAvail = true;
}
@OPERATION(guard="isForkAvailable")
void acquire(){

isAvail = false;
}
@GUARD boolean isForkAvailable(){

return isAvail;
}
@OPERATION void release(){

isAvail = true;
}

}

public class TurnDisplay extends Artifact {
@OPERATION void init(int startValue){

defineObsProperty("turn",startValue);
}
@OPERATION void next(){

int t = getObsProperty("turn").intValue();
updateObsProperty("turn",t+1);

}
}

public class TicketDispenser extends Artifact {
int ticket;
@OPERATION void init(){

ticket = 0;
}
@OPERATION void getTicket(){

signal("ticket",ticket++);
}

}

public class Waiter extends Agent {

@ACTIVITY void main() throws Exception {
int nphilo = 5;
int nforks = 5;

for (int i = 0; i < nforks; i++){
makeArtifact("fork-"+i,"Fork");

}

makeArtifact("ticket_dispenser",
"TicketDispenser");

makeArtifact("turn_display",
"TurnDisplay",
new ArtifactConfig(nphilo-1));

for (int i = 0; i < nphilo; i++){
String lfork = "fork-"+i;
int rid = (i+1) % nforks;
String rfork = "fork-"+rid;
String agentName = "philo-"+i;

spawnAgent(agentName, "Philosopher",
new AgentConfig(lfork,rfork)));

}

}
}

Fig. 9. Source code of the artifacts (left) and waiter agent (right) in the decentralized solution to the dining philosopher problem.

In particular, a Fork artifact can be introduced to wrap the access to each fork (resource); a TicketDispenser artifact
can be introduced to rule each philosophers’ access to the table, by distributing tickets; and finally a TurnDisplay artifact
can be used for keeping track of (and make it observable) which ticket number can be served. Each philosopher must first
get a ticket from the TicketDispenser; then, after retrieving a ticket, a philosopher can get the forks and eat as soon as
the turn reported by the TurnDisplay is greater or equal to the ticket number owned by the philosopher.

The source code of the artifacts is reported in Fig. 9(left) — the booting agent is shown on the right. Artifact Fork simply
provides two operations to acquire and release the resource, TicketDispenser to get a new ticket, which is simply a
monotonic increasing integer. TurnDisplay has an observable property (turn) reporting the maximum ticket number
that can be served and an operation next to advance such a value. The turn property is properly initialized in the operation
initwith the value specified by the agent creating the artifact (the WaiterAgent), which corresponds to the total number
of philosophers minus one. This means that the system allows no more than N − 1 philosophers to eat concurrently, which
is the condition that makes it possible to avoid deadlocks. Also, the absence of starvation for a philosopher that wants to eat
is guaranteed by the use of the ticket dispenser.7

The agent program for the philosophers is shown in Fig. 10. Though it appears somehow articulated, it is well
modularized: after executing asetup activity, thework activity accounts for repeatedly fulfilling theeating taskwhen the
agent has a hungry memo, or thinking task otherwise. The eating activity is further composed of sub-activities, part of
them executed in parallel as specified in the agenda. First the agent gets a ticket from the TicketDispenser, then it waits
for its turn, by observing the TurnDisplay waiting to perceive a turn value greater or equal to the agent’s current ticket
value. When this occurs, the philosopher can finally interact with the two distinct Fork artifacts to acquire the resources,
by means of two sub-activities, getLeftFork and getRightFork which can be logically executed in parallel. As soon as
both such sub-activities successfully completed (whichmeans that both the forks have been acquired), then the philosopher
can eat. After that, the agent can release the resources and cease the turn (by interacting with TurnDisplay): also these
activities are independent from each other and can be done in parallel.

3.4. Decoupling logical and physical concurrency

By introducing a further level of abstraction over the OO layer and the basic multi-threading mechanisms provided by
Java, a simpA program is less efficient than programs exploiting directly fine-grainedmechanisms, as those provided by Java

7 Here we do not consider the case of starvation due to philosophers’ misbehavior or failure.

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 49

public class Philosopher extends Agent {

@ACTIVITY_WITH_AGENDA({
@TODO(activity="setup"),
@TODO(activity="work",

pre="completed(setup)")
}) void main() {}

@ACTIVITY void setup() {
Memo memo = getMemo("boot_args");
String lfork = memo.stringValue(0);
String rfork = memo.stringValue(1);
ArtifactId left = lookupArtifact(lfork);
ArtifactId right = lookupArtifact(rfork);
memo("forks", left, right);
ArtifactId disp =

lookupArtifact("turn_display");
focus(disp,getSensor("s0"));
memo("hungry");

}

@ACTIVITY_WITH_AGENDA({
@TODO(activity="eating",

pre="memo(hungry)", persistent=true),
@TODO(activity="thinking",

pre="!memo(hungry)", persistent=true)
}) void work(){}

@ACTIVITY_WITH_AGENDA({
@TODO(activity="getTicket"),
@TODO(activity="waitForMyTurn",

pre="memo(ticket(_))"),
@TODO(activity="getLeftFork",

pre="completed(waitForMyTurn)"),
@TODO(activity="getRightFork",

pre="completed(waitForMyTurn)"),
@TODO(activity="eat",

pre="completed(getLeftFork),
completed(getRightFork)"),

@TODO(activity="releaseLeftFork",
pre="completed(eat)"),

@TODO(activity="releaseRightFork",
pre="completed(eat)"),

@TODO(activity="ceaseTurn",
pre="completed(eat)")

}) void eating() throws Exception {}

...

...
@ACTIVITY void getTicket(){

SensorId sid = getSensor("s0");
use(tid, new Op("getTicket"),sid);
Perception ticket = sense(sid,"ticket");
memo("ticket",ticket.intContent(0));

}
@ACTIVITY void getLeftFork(){

Memo forks = getMemo("forks");
ArtifactId left = forks.asArtId(0);
use(left, new Op("acquire"));

}
@ACTIVITY void getRightFork(){ ... }

@ACTIVITY void waitForMyTurn(){
Memo ticket = getMemo("ticket");
int myticket = ticket.intValue(0);
sense(getSensor("s0"),

new MyTurnFilter(myticket));
}
@ACTIVITY void eat() {

// eat eat
delMemo("hungry");

}
@ACTIVITY void releaseLeftFork() {

Memo forks = getMemo("forks");
ArtifactId left = forks.asArtId(0);
use(left, new Op("release"));

}
@ACTIVITY void releaseRightFork() { ... }

@ACTIVITY void ceaseTurn() {
delMemo("ticket");
ArtifactId tid =

lookupArtifact("turn_display");
use(tid, new Op("next"));

}
@ACTIVITY void thinking() {

// mumble mumble
memo("hungry");

}
}

public class MyTurnFilter
implements IPerceptionFilter {

private int turn;
public MyTurnFilter(int turn){

this.turn = turn;
}
public boolean select(Perception ev){

return ev.getLabel().equals("turn") &&
(ev.intContent(0)>=turn);

}
}

Fig. 10. Source code of the philosopher agent in the decentralized solution to the dining philosopher problem. The code of getRightFork and
releaseRightFork, not shown, is analogous to, respectively, getLeftFork and releaseLeftFork.

in the java.util.concurrent library — much in the same way Java is less efficient than lower-level languages such as
C. On the other hand, the framework allows for completely decoupling the definition of tasks, activities and operations as
logical units of work from their actual executions by threads. Themain benefit of this architectural choice –which is adopted
also in other existing task-oriented concurrency frameworks, such as the Executor in the java.util.concurrent library
– is scalability,making it possible to control the number of threads used to execute programswhichmay involve the creation
of many, possibly complex agents and artifacts.

Currently the framework adopts a pool of threads for executing the two kinds of computational activities involved in the
execution of a simpAprogram, i.e., agent activities and artifact operations. So, even if performance is not a primary concern of
simpA, such decoupling makes it quite straightforward to investigate in the future more advanced policies to map activities
and operations to threads.

3.5. Concurrency bugs and properties

Some features of the programming model have been thought to reduce the number of bugs that can occur in concurrent
programs or to simplify their detection.

50 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

Concerning safety, on the artifact side no race conditions can occur in changing artifact state when multiple agents
act upon the same artifact, given the computational model adopted for artifacts. Analogously, on the agent side no race
conditions can occur in updating/inspecting the agenda in agents having multiple concurrent activities, given the atomicity
of agent internal actions.

Then,we argue that the use of a declarative approach to specify – on the agent side – the relationships among the activities
inside an agenda and – on the artifact side – the guard condition for operation step execution improves both the readability
of the code and the detection of bugs, compared to approaches using directly lower-level mechanisms, such as condition
variables inmonitors. So, problems such as deadlock or livelock can still occur, for instance by definingwrong pre-conditions
for todo in agents’ agenda or wrong guards in operation steps; however, the reason for the problems should be easier to find
by checking the content of the logic expressions, either manually or by means of proper automated tools. Actually, the price
to pay for such a declarative approach is on the performance side, due to the overhead of the runtime evaluation of the logic
expressions.

Finally, concerning agent–artifact interaction, the use of timeouts in actions such as sense and use makes it possible to
program agents that do not starve in waiting for events that could possibly never occur, due to either bugs or bad use of
artifacts.

4. Operational semantics

In this section we introduce the operational semantics for a significant subset of the simpA framework. The main
aspects of interest that we model include (i) a basic object-oriented layer used to encode basic data types and algorithmic
computation; (ii) an agent model focussing on activities, agendas, and sensors; and (iii) an artifact model focussing on
operations, steps and event generation — aspects like timeouts, persistent todo, focussing and observable properties, are
neglected for the sake of space and for keeping the formalization uniform and reasonably simple. The goal of the operational
semantics provided is as a formal specification of simpA constructs that avoids ambiguities — a rather crucial tool in the
context of complex, concurrent systems. In future works, this will pave the way towards establishing technical analysis
results over simpA applications, for example, by equipping the language with a type system.

Following an established tradition of both the object-orientation and concurrency research contexts (see e.g. [22,23,55]
for the former, and [6,36] for the latter), the operational semantics is developed on top of a calculus. That is, we introduce a
rather small language that focuses on themain aspects of interest while abstracting away from other languagemechanisms.
With this approach, operational semantics amounts to the specification of a sort of virtual simpA interpreter (or engine),
defined in a rigorous and uniform way in terms of rewriting rules. Technically, the formalization is structured in four parts,
presented in the following subsections: first, an abstract syntax resembling the Java extension, listing the main operators
and constructs considered; second, a runtime syntax, adding to the abstract syntax the runtime entities manipulated by the
virtual simpA interpreter; third, evaluation contexts that define the places where the next expression has to be evaluated;
and fourth, an operational semantics describing how runtime entities evolve over time.

4.1. Abstract syntax

This calculus heavily relies on the notations and syntactic conventions of the FJ (Featherweight Java) calculus, the de facto
standard for modeling Java extensions [22].

We let metavariable C range over class names, A over artifact (template) names, G over agent (template) names, f over
field names, m overmethod names, a over activity names, o over operation names and x over variables. T is used to represent
types that can be used in the surface language, which ranges over G, A, C, and identifier sns (which stands for the type of
sensors): note, however, that our core language is untyped, yet types are expressed for example in method and operation
arguments to strengthen similarity with the actual language, though they would not be needed. Greek letters are used as
metavariables ranging over identifiers for runtime instances of the above constructs: α for artifacts, γ for agents, ω for
operations, and σ for sensors; metavariable ρ is additionally used for references α and γ . As usual in [22], we write ‘‘e’’ for
‘‘e1, . . . , en’’, ‘‘T x’’ for ‘‘T1 x1, . . . , Tn xn’’, ‘‘T f’’; for ‘‘T1 f1; . . . ; Tn fn’’, and the like (n ≥ 0). The notation ‘‘x’’ is actually
used for any metavariable x, and stands for a new metavariable over lists of elements of kind x; given list x, we denote by
xi its ith element. The notation e[e′/x] represents expression e where all occurrences of variable x are substituted with e′,
and similarly for the iterative version e[e/x]; moreover, syntax e[i → e] represents list e after substituting its ith element
with e. The abstract syntax of the calculus is shown in Fig. 11.

A program is formed by a list of definitions L, of classes, agents and artifacts. A class definition includes its name C, a
list of fields f (each with its type Ti), and a list of methods (class inheritance and constructors are not explicitly modeled).
Methods have a return type T, a name m and arguments T x, and their body is just a return statement — as in FJ, classes are
functional entities with no side effects. An agent (template) definition has a name G and a list of activities Act representing
its autonomous behavior. An activity has a name a, arguments T x, an optionally void agenda of activities, each with its
own precondition ei, and a body formed by a statement (expressions and statements coincide). Note that while in simpA
an activity has either a body (simple activity) or sub-activities (activity with agenda), we generalize by allowing activities
with both a body and sub-activities — the body is executed only when the sub-activities completed. An artifact (template)
definition has a name A, a list of fields representing its state, and a list of operations Op and steps Step representing the

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 51

L ::= class C{T f; Meth } Class definition
| agent G{Act} Agent definition
| artifact A{T f; Op Step} Artifact definition

Meth ::= T m(T x){return e;} Method definition
Act ::= activity a(T x) agenda(a e){b;} Activity definition

Op ::= operation o(T x) guard e{b;} Operation definition
Step ::= step o(T x) guard e{b;} Step definition

e, b ::= x | α | γ | ω | σ Expressions: variable/id
| e.f | e.m(e) field access/meth invocation
| e;e | new T(e) sequence/instance creation
| .f | .f=e artifact-field access/update
| .#o(e) | .>e next step/event generation
| e<-e..o(e) | e.< operation use/event sensing
| read(e) | rem(e) | ins(e) memo operations

Fig. 11. Syntax.

v, w ::= ρ | σ | new C(v) Values

n ::= a | n.a Nested activity

s ::= o⟨e⟩
*(v) Pending step

M ::= 0 empty configuration
| (M | M) parallel composition
| α = A*(v)[ω*] artifact
| γ = G(v)[ω σ] agent
| σ(γ) = sns(v) sensor
| n(γ) = [a*]{e:b}* activity
| ω(α) = γ :o[s]*

⟨e⟩
*
{b}

* operation

Fig. 12. Runtime constructs.

services it provides. Operations and steps have a name o, arguments T x and a guard expression e, and their body is a
statement.

Expressions e (or b) are used both to model functional-like evaluation and step-by-step execution of instructions
by a semicolon sequential composition operator—this choice ultimately results in a simpler yet expressive calculus. An
expression can be a variable x, namely, an argument of the current method/activity/operation; inside classes, literal this
is handled as a special kind of variable. The identifiers α, γ , ω, σ do not belong to the surface language, but are generated
as expressions are evaluated. Standard OO expressions are provided for accessing field f from receiver e (e.f), invoking
method m from receiver e with arguments e (e.m(e)), and creating an instance of type T with arguments e (new T(e)).
All the above expressions can be used in classes, agents, or artifacts. Other expressions are included to model primitives of
the simpA framework as new language mechanisms. Inside artifacts, fields are accessed by syntax .f and are updated by
.f = e (e evaluates to the new value), a new step is triggered by .#o(e), and an event with content e is generated by
.>e. Inside agents, syntax σ<-α..o(e) is used to use operation o(e) on artifact α and to receive events on sensor σ ; e.<
is used to sense an event on sensor e; operators read, rem and ins are used to read, remove and insert memos. We abuse
the operator ‘‘∈’’ to represent lookup functions, using it for syntactic structure inclusion: wewrite, for example, ‘‘Meth ∈ C’’
to mean method that Meth is included in the definition of class C.

In developing the above syntax, we made a number of assumptions to trade off simplicity of the calculus and
completeness of features with respect to simpA. Basically, the above syntax actually allows more programs than a compiler
for the language should accept; for example, the next-step operator is in principle allowed in agents as well. We handle
these kinds of check not syntactically, but as a typing or well-structuring problem, which we discuss in Section 4.6.

4.2. Configurations

While in standard functional (or OO) calculi operational semantics is defined as an evaluation transition over expressions,
terminating in a value, in our context the state of computation ismore involved, and needs the introduction of some runtime
entities as shown in Fig. 12. As a syntactic convention, we adopt specific brackets for given kinds of elements: ‘‘()’’ for

52 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

E ::= JK | E;e | E.f | E.m(e) | v.m(v E e) Expressions
| new T(v E e) | .f=E | .#o(v E e)
| E<-e..o(e) | σ<-E..o(e) | σ<-α..o(v E e)
| E.< | .>E

K ::= ω(LM) = γ :o[s*]⟨E⟩
ev

{b} | ω(LM) = γ :o[s*]⟨t⟩{E}
ev Operations

| ω(LM) = γ :o[s* o⟨E⟩
ev(v)]ev⟨e⟩{b} Steps

| n(γ) = [a*]{E:b}ev | n(γ) = [a*]{t:E}ev Activities

Fig. 13. Evaluation contexts.

arguments, ‘‘⟨⟩’’ for a guard or precondition, ‘‘{}’’ for a body, and ‘‘[]’’ for a list of pending elements (steps, operations, todos,
and so on). Moreover, we label syntactic elements with state information, so as to keep track of state changes. Meta-variable
‘‘*’’ ranges over such labels, which can be possibly empty (typically meaning an idle state): for example, for an artifact we
use g for guard evaluation, e for execution, and s for step-selection; for a bracket construct like {e:b}, label ‘‘ev’’ means that
its content is under evaluation.

We first introduce the concept of a value v, representing as usual the possible outcome of the evaluation of an expression:
values are either references (to artifacts, agents, or actions/sensors) or objects; namely, ‘‘new C(v)’’ is an instance of class
C where its fields are filled with values v, orderly. Hence, while agents and artifacts have an identifier, objects are expressed
by their class and fields, that is, in a functional, stateless way like in FJ calculus. Since activities can be nested into agendas, a
notation for nested activities n is introduced; for example, a.a′ means activity a′ within the agenda of top-level activity a.
A pending step is represented by notation o⟨e⟩(v), where o is the step name, e is the guard expression, and v are the step
arguments — label ev in a pending step means its guard can be evaluated.

The operational semanticswill be described as a transition system over configurations, ranged over byM . A configuration
is a multi-set of five kinds of elements, with composition operator ‘‘ | ’’: (i) α = A*(v)[ω*] is the state of an artifact with
identifier α, v field values, and ω* pending operations; (ii) γ = G(v)[ω σ] is an agent with identifier γ , memos v, and
where each coupleωi σi is an association between operation and sensor; (iii) σ(γ) = sns(v) is a sensorwith identifier σ ,
belonging to agent γ , and with pending events v; (iv) n(γ) = [a*]{e:b}* is an activity with (nested) name n belonging
to agent γ , with pending agenda a*, precondition e and body b; and (v) ω(α) = γ :o[s]*

⟨e⟩{b} is an operation with
identifierω, triggered by agent γ on artifactα, with nameo, pending stepss, guarde, and bodyb. Configurations, lists inside
[] brackets, and memos of an agent are supposed to be multi-sets, and we hence assume associativity and commutativity
of their composition operator, whereas for other lists we only assume associativity.

4.3. Evaluation contexts

Expressions to be evaluated can appear in many places of a configuration; we therefore introduce evaluation contexts,
which represent configurations (K) and expressions (E) with one hole in them, denoted by JK and representing the first place
where evaluation can be applied [55,52]. Their syntax is expressed in Fig. 13. Boolean values are expressed by notations t
and f, which are considered as objects ‘‘new True()’’ and ‘‘new False()’’ of library classes for booleans.

As an evaluation context E is basically an expression with one hole JK in it, syntax EJeK denotes the expression obtained
by context E after substituting its hole with expression e. This syntactic construct is useful to identify what is the next
sub-expression that needs to be evaluated, imposing a proper evaluation order by abstracting away from the other parts of
the program where such a sub-expression is inserted. When an expression matches EJeK, it means that e is the next sub-
expression that needs to be evaluated: the idea is that when e evaluates to v, then the whole expression EJeK evaluates to
EJvK. Theway the syntax ofE is structured guarantees for example that a receiver is evaluated before themethod arguments
are evaluated, and that such arguments are evaluated from left to right, and so on.

Evaluation contexts K have another hole LM: KLρMJeK represents a configuration item belonging to agent or artifact ρ,
where e is the next expression to evaluate. Inside operations, guards and bodies are executed when they are tagged by
label ev; in steps, a guard step can be evaluated if the step is tagged ev and the whole set of steps is tagged ev (namely, the
artifact is in selection state as will be discussed later); finally, in activities labelled ev, the precondition evaluates first, and if
it reaches t then also the body can be executed. The actual impact of evaluation contexts on the operational semantics will
be described in the following.

4.4. Operational semantics: execution of instructions

The operational semantics is defined as a non-deterministic transition system over configurations. For presentation
purposes, in this section we first describe rules managing execution of instructions appearing inside evaluation contexts,
which provide an account for the point-wise semantics of simpA constructs (access to fields, generation of events, triggering

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 53

M′
−→ M′′

M | M′
−→ M | M′′

[PAR]

KLρMJv;eK −→ KLρMJeK [SEQ]

T f ∈ C

KLρMJnew C(v).fiK −→ KLρMJviK
[FIE]

T m(T x){return e;} ∈ C

KLρMJnew C(v).m(w)K −→ KLρMJe[new C(v)/this][w/x]K
[INVK]

Fig. 14. Evaluation of the OO layer.

of next steps, and so on), and then analyze the state transition of agents and artifacts, which emphasizes instead the
concurrent behavior enacted in agents and artifacts — or rather, the agent and artifact abstract machine (selection of steps,
disposal of completed activities, and so on).
General rules — Fig. 14 provides rules for evaluation of parallel composition, sequential composition, and typical object-
oriented operations: it hence models aspects which are mostly orthogonal to agents and artifacts.8 Rule [PAR] sets an
interleaved parallelism model for this calculus, saying that any system subpart M′ can spontaneously evolve to M′′. The only
form of global awareness that we really require is due to predicate fresh (used in other rules) which is used to generate
a globally new reference identifier, for agents, artifacts and operations — freshness of new identifiers is ensured in simpA
at the implementation level through proper time stamps. Rule [SEQ] says that if we have a context KLρMJv;eK, it means
that the first statement of the block has already been executed, and hence we can move to KLρMJeK. Rules [FIE] and [INVK]
deal with field access and method invocation as for the standard object-oriented settings (they are in fact similar to the
corresponding rules in FJ). In both cases the receiver is a fully evaluated expression of the kind ‘‘new C(v)’’, representing
an object of class C with values v in its fields. Accordingly, [FIE] retrieves the ith field, while [INVK] retrieves the expression
body e after substituting this with ‘‘new C(v)’’, and formal parameters x with actual arguments w.
Agent constructs – Fig. 15 provides the operational semantics of agents constructs, that is, instructions and operators that
concern agents. Rule [AGN] handles creation of an agent with initial memos v, which yields a new reference γ , and creates
a new agent instance and a main activity instance; similarly, rule [SNS] handles creation of a new sensor. Rule [RDMM]
handles the operation for reading a memo matching a template given, which yields f if none is retrieved. Rules [RMMM,
INSMM] handle operations for removing and inserting memos: note that differently from [RDMM] (which can be used also
in preconditions), removing is blocked until a memo is found. Rule [USE] defines the semantics of operation use, which
basically creates an operation instance: the operation identifierω is returned, it is added to the artifact’s set of idle (pending)
operations, and a newassociationwith the specified sensorσ is added to the agent instance. The sensing operation is handled
by rule [PER], in which the first value v in the queue of the sensor – when available – is consumed and returned.
Artifact constructs — Fig. 16 similarly provides the operational semantics of basic instructions for artifacts, that is,
instructions and operators that concern artifacts. Rule [ART] is used to create an artifact similarly to rule [AGN] for agents:
a new operation instance for init is created and prepared for execution, linked to a fresh, dummy agent reference. Rule
[GET] models artifact field access in a way similar to [FIE], while [SET] accordingly models the update. Rule [GEN] is used
to handle event generation: it yields the event content v, and appends it to the queue of the proper sensor — namely, the
sensor linked to the operation ωi as specified in the agent configuration. Rule [NEXT] handles triggering of the next step,
which yields the artifact identifier and simply adds a new pending step to the operation instance.

4.5. Operational semantics: agent and artifact abstract machines

We now describe the state changes that occur in an agent while executing activities, and in an artifact while executing
operations, which will emphasize details of the life-cycle of activities and operations. These are given in terms of transition
rules as before (though they do not work on evaluation contexts, but rather onwhole configurations). Additionally, we show
Petri net schemata that help in visualizing the fundamentals of this part of the operation semantics.

8 In principle we could have used a modular approach as in [37] to rely on a more abstract domain of values, but we believe that our approach is still
simpler for it requires only three additional rules for handling the object-oriented layer.

54 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

γ fresh activity main() agenda(a e){b;} ∈ G

KLρMJnew G(v)K −→ KLρMJγ K | γ = G(v)[] | main(γ) = [a]{t:b}ev
[AGN]

σ fresh

KLγ MJnew sns()K −→ KLγ MJσ K | σ(γ) = sns()
[SNS]

(w=v if v matches v′) or (w=f otherwise)

KLγ MJread(v′)K | γ = G(v v)[ω σ] −→ KLγ MJwK | γ = G(v v)[ω σ]
[RDMM]

v matches v′

KLγ MJrem(v′)K | γ = G(v v)[ω σ] −→ KLγ MJvK | γ = G(v)[ω σ]
[RMMM]

KLγ MJins(v)K | γ = G(v)[ω σ] −→ KLγ MJvK | γ = G(v v)[ω σ] [INSMM]

ω fresh operation o(T x) guard e{b} ∈ A

KLγ MJσ<-α..o(v)K | γ = G(v′)[ω σ] | α = A*(w)[ω′] −→

KLγ MJωK | γ = G(v′)[ω σ, ω σ] | α = A*(w)[ω,ω′] |

ω(α) = γ :o[]⟨e⟩{b[v/x]}

[USE]

KLγ MJσ.<K | σ(γ) = sns(v,v) −→ KLγ MJvK | σ(γ) = sns(v) [PER]

Fig. 15. Evaluation of basic agent constructs.

α, ω, γ fresh operation init() guard true{b;} ∈ A

KLρMJnew A(v)K −→

KLρMJαK | α = Ae(v)[ωe] | ω(α) = γ :init[]⟨t⟩{b}
ev

[ART]

T f ∈ A

KLαMJ.fiK | α = A*(v)[ω*] −→ KLαMJviK | α = A*(v)[ω*]
[GET]

T f ∈ A w = v[i → w]

KLαMJ.fi=wK | α = Ae(v)[ω*] −→ KLαMJwK | α = Ae(w)[ω*]
[SET]

ωi(α) = γ :o[s]⟨t⟩{EJ.>vK}ev | γ = G(v′)[ω σ] | σi(γ) = sns(v) −→

ωi(α) = γ :o[s]⟨t⟩{EJvK}ev | γ = G(v′)[ω σ] | σi(γ) = sns(v,v)
[GEN]

step o′(T x) guard e{...} ∈ A

ω(α) = γ :o[s]⟨t⟩{EJ.#>o′(v)K}ev | α = Ae(w)[ω*] −→

ω(α) = γ :o[s o′
⟨e⟩(v)]⟨t⟩{EJαK}ev | α = Ae(w)[ω*]

[NEXT]

Fig. 16. Evaluation of basic artifact constructs.

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 55

activity a() agenda(a e){. . . } ∈ G
activity ai() agenda(a′ e′){b′} ∈ G

γ = G(v)[ω σ] | n.a(γ) = [a* ai]{e:b} −→

γ = G(v)[ω σ] | n.a(γ) = [a* ai
f]{e:b} | n.a.ai(γ) = [a′]{ei:b′}

[SCHD]

n(γ) = [a* ai
f]{e:b} | n.ai(γ) = [a′c]{e′:b′} −→

n(γ) = [a* ai
e]{e:b} | n.ai(γ) = [a′c]{e′:b′}ev

[EXEC]

activity a() agenda(a e){...} ∈ G

γ = G(v)[ω σ] | n.a.ai(γ) = [a*]{f:b}ev −→

γ = G(v)[ω σ] | n.a.ai(γ) = [a*]{ei:b}ev

[PREC]

n(γ) = [a* ai
e]{e:b} | n.ai(γ) = [a′c]{t:v}ev −→

n(γ) = [a* ai
c]{e:b}

[DISP]

Fig. 17. Agent state changes.

Fig. 18. Petri net schema describing the life-cycle of an activity nwith three sub-activities a1, a2, a3.

Agent abstract machine — Fig. 17 provides the operational semantics of agent behavior, and Fig. 18 accordingly describes
themain aspects of activities life-cycle in terms of Petri nets. Given activityn.a, rule [SCHD] takes at any time an idle todoai

and schedules it: a proper activity instance is created, and the state of ai moves to af
i in n.a’s agenda (f stands for ‘‘firing’’).

Rule [EXEC] states that when all sub-activities of n.ai are labelled c , meaning ‘‘completed’’, then this activity can execute:
this is obtained by marking ‘‘ev’’ the guarded body {e′:b′}, which makes this activity matching an execution context K. If,
during execution of such activity, the guards would evaluate to false, by rule [PREC] we reset the guard to its initial value, so
it can be evaluated again. Rule [DISP] handles the disposal of an activity, which occurs when the agenda is completed and
the body is completely evaluated: most importantly, this moves the state of this activity to completed (label c) in its parent’s
agenda.

Fig. 18 shows an equivalent Petri net description, which is compositional since each dashed box represents one activity.
The activity transits across states i (idle), f (firing), e (executed) and c (completed): transition SCHD puts tokens into the
places of the sub-activities in order to initiate them, and EXEC starts only when such sub-activities are completed.
Artifact abstractmachine—Fig. 19 provides the operational semantics of artifact behavior, and Fig. 20 accordingly describes
themain aspects of an operation’s life-cycle in terms of Petri nets.When an artifact is in an idle state, by rule [GRD] a pending
operation is selected for guard evaluation. ContextG allows this evaluation, resulting in one of the two following cases: if the
evaluation is negative, rule [FLS] labels the operation as ‘‘completed’’ (preventing re-evaluation); if the evaluation is positive,
rule [GO] moves the artifact and operation to the execution state, cleaning all ‘‘completed’’ labels of current operations.
Context B now causes the evaluation of the body until it becomes a value, namely, its execution is over. Rules [END] and
[STOP]move the artifact to the selection state: the former drops the operation if no pending steps exist; otherwise, the latter

56 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

α = A(w)[ω ω*] | ω(α) = γ :o[]⟨e⟩{b} −→

α = Ag(w)[ωg ω*] | ω(α) = γ :o[]⟨e⟩
ev

{b}

[GRD]

operation o(T x) guard e{b} ∈ A

α = Ag(w)[ωg ω*] | ω(α) = γ :o[]⟨f⟩ev{b} −→

α = A(w)[ωc ω*] | ω(α) = γ :o[]⟨e⟩{b}

[FLS]

α = Ag(w)[ωg ω0 ω1
c ω2

p] | ω(α) = γ :o[]⟨t⟩ev{b} | KLγ MJωK −→

α = Ae(w)[ωe ω0 ω1 ω2
p] | ω(α) = γ :o[]⟨t⟩{b}

ev
| KLγ MJtK

[GO]

α = Ae(w)[ωe ω*] | ω(α) = γ :o[]⟨t⟩{v}
ev

−→ α = As(w)[ω*] [END]

α = Ae(w)[ωe ω*] | ω(α) = γ :o[s s]⟨t⟩{v}
ev

−→

α = As(w)[ωp ω*] | ω(α) = γ :o[s s]⟨t⟩{v}

[STOP]

α = As(w)[ω0 ω1
b] −→ α = A(w)[ω0 ω1

p] [STUCK]

α = As(w)[ωp ω0 ω1
b ω2

p] | ω(α) = γ :o[s]⟨t⟩{v} −→

α = As(w)[ωs ω0 ω1
b ω2

p] | ω(α) = γ :o[s]ev⟨t⟩{v}

[S-PICK]

step o′(T x) guard e{b} ∈ A

α = As(w)[ωs ω0 ω1
b ω2

p] | ω(α) = γ :o[s* o′
⟨t⟩(v)]ev⟨t⟩{v} −→

α = Ae(w)[ωe ω0 ω1
p ω2

p] | ω(α) = γ :o[]⟨t⟩{b}
ev

[S-GO]

step o′(T x) guard e{b} ∈ A

α = As(w)[ω*] | ω(α) = γ :o[s* o′
⟨f⟩(v)]ev⟨t⟩{v} −→

α = As(w)[ω*] | ω(α) = γ :o[s* o′
⟨e⟩(v)c]ev⟨t⟩{v}

[S-NO]

α = As(w)[ωs ω*] | ω(α) = γ :o[sc]ev⟨t⟩{v} −→

α = As(w)[ωb ω*] | ω(α) = γ :o[s]⟨t⟩{v}
[S-ALL]

Fig. 19. Artifact: Rules for state changes.

fires, which moves the operation to the ‘‘pending’’ state. After rule [END], all pending operations are evaluated for selection,
by evaluating all the guards of their pending steps: if none exists or they are all negatively evaluated (in which case pending
operations are of the kindωc) rule [STUCK]moves the artifact back to the idle state. Otherwise, rule [S-PICK] selects a pending
operation and moves it to the step selection state, where by context G the guards of pending steps are evaluated. We can
now have three cases: [S-GO], if a guard evaluates to true, artifact and operation are moved to execution, other pending
steps are discarded, and the evaluation state for other operations is cleaned (namely, blocked operations become pending
again); [S-NO], if a guard evaluates to false, the state of the pending event is marked completed (i.e., negatively evaluated),
and the original guard is restored for future re-evaluation; finally, [S-ALL], if all steps are found as negatively evaluated,
the overall operation is marked as negatively evaluated — hence either rule [S-PICK] finds another pending operation, or
[S-STUCK] moves the artifact state back to idle.

The Petri nets in Fig. 20 describe this behavior in a pictorial way: the top part and the bottom are to be joined to obtain
the exact artifact/operation evolution (e.g. transition [FLS] has incoming arcs from G, AI and outgoing arcs to C , AI) — they
have been kept separated for clarity. Double-arrowed arcs are used to represent so-called transfer arcs [15]: when one of

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 57

Fig. 20. Petri nets describing artifact life-cycle (bottom) and operations life-cycle (top); note that (i) the overall net is the union of the two nets; (ii) the
three areas on top indicate transitions enabled by artifact states AI , AE , AS ; and (iii) double-arrowed edges represent transfer arcs.

such arcs connects place P with transition T and another such arc transition T with place P ′, then as T fires all tokens in P get
transferred to P ′ [15] (e.g., firing transition GO, besides moving one token from G to E, also transfers all tokens from C to I).

4.6. Well-formedness and properties

In order to provide a more abstract characterization of the small-step operational semantics we here state some
properties of well-formed programs, which will also help unveiling some properties of simpA programs.
Well-formedness — A simpA program is said to be well formed when the following conditions hold.

• GuardWF — guards of operations and steps include only OO constructs, and accesses of artifact fields (namely constructs
handled by rules [INVK, FIE, SEQ, GET]);

• OpWF — bodies of operations and steps additionally include assignments of artifact fields, creation of new
agents/artifacts, generation of events and triggering of new steps (see constructs handled in [SET, ART, AGN, GEN, NEXT]);

• PrecWF—preconditions of agent activities include only OO constructs, and operations for readingmemos (see constructs
handled in [INVK, FIE, SEQ, GET, RDMM]);

• ActWF — bodies of agent activities additionally include operations for removing/inserting memos, sensing events, using
artifacts, and creating agents/artifacts/sensors (see constructs handled in [RMMM, INSMM, PER, USE, ART, AGN, SNS]);

• OOCheck — the correctness of OO constructs is checked using standard techniques as of FJ [22];
• OpCheck — the correctness of artifact operations (field access and update, and triggering of a new step) is checked

against the definition of the artifact in which they occur (they resemble field access/update and method invocation in
OO languages);

• NewCheck — the correctness of artifact and agent creation is checked against their definition (they resemble class
instantiation in OO languages).

Note that in this definition we do not check use operations — though their checking is similar to method invocation. This
is because we provide no guarantee of their execution anyway, since the precondition of an operation may turn out to be
indefinitely evaluated to false, in which case the calling agent remains blocked just as if the use operation were not well
formed (e.g. the operation name does not match any artifact operation).

A valid initial state for a system configuration is formed by the execution of an agent’s main activity. More precisely,
given an agent G, let v be a set of fully evaluated arguments, a its set of sub-activities, and b the body of its main activity;
then the initial state generated by G is

γ = G(v)[] | main(γ) = [a]{t:b}ev.

Termination & progress— Given a well-formed simpA program and a valid initial state S0, any computation path from S is
of one of the following four kinds.

58 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

• Evaluation loop—The computation path is infinite, due to a loop during the evaluation of a guard, precondition, operation
body, or activity body, namely, a recursive pattern of method calls. A restrictive compiler for simpA should statically
prevent this situation, with techniques likes those in [51].

• Next-step loop—The computation path is infinite, due to a loop in the triggering of next steps, namely, steps continuously
trigger each other as in recursive method calls. This behavior may either be prevented statically as in the case above, or
be allowed so as to model those cases where artifacts continuously generate events (e.g. as in timer artifacts).

• Termination — The computation path reaches a correct termination of agent behavior, namely, all agent activities have
been executed (they have been disposed), and all artifacts are idle and their operations (if any) are in ‘‘pending’’ state.
Formally, one such state has only elements of the kind γ = G(v v)[ω], σ(γ) = sns(v), α = A(w)[ωp], plus
terms for operations in ω. We allow pending operations for our notion of correct termination concerns the proactive
behavior of agents only.

• Deadlock — The computation path reaches a deadlock of agent behavior, namely, some agent activity is blocked on
perceiving an event, using an artifact operation, or reading a memo. Formally, one such state has at least one element of
the kind KLγ MJσ.<K, KLγ MJωK, and KLγ MJrem(v)K.

Concurrency properties— Given a well-formed simpA program, and any computation path from a valid initial state S0, the
following properties hold.

• Activity precondition — An activity body is never executed until its sub-activities complete and its precondition is
positively evaluated. Formally, in any state S of the path we have

n(γ) = [a*]{t:b}ev ∈ S ⇒ a*
= ac.

This is a consequence of [EXEC] transition in Fig. 18, which requires completion of sub-activities.
• Activity parallelism — Two (or more) activities of one agent may concurrently be in evaluation state. Formally, for some

initial state and some state S in a computation path we may have

n(γ) = [ac]{t:b}ev | n′(γ) = [a′c]{t:b′}ev ∈ S.

This is a consequence of the [SCHD] transition in Fig. 18, where all sub-activities are independently fired.
• Steps invariant — An artifact in idle state is such that no guard step positively evaluates. Formally, if a state S is such that

α = A(w)[ω*] | ω(α) = γ :o[s o′
⟨e⟩(v)]⟨t⟩{v} ∈ S

then each computation from the following state

α = As(w)[ωs] | ω(α) = γ :o[o′
⟨e⟩

ev(v)]ev⟨t⟩{v}

necessarily reaches state

α = As(w)[ωs] | ω(α) = γ :o[o′
⟨f⟩ev(v)]ev⟨t⟩{v}.

This is a consequence of the net in Fig. 20, where the transition [STUCK] (moving artifact state to idle) is enabled only
if all pending operations reached the blocked state (which happens if all their guard steps were evaluated to false);
additionally, while in the idle state, no changes to the artifact state can occur, and hence preconditions do not change
their value.

• Operation isolation — Only one step is in execution at a time. Formally, in any state S we have

ω(α) = γ :o[s]⟨t⟩{b}
ev

| ω′(α) = γ ′:o′[s′]⟨t⟩{b′
}
ev /∈ S (γ ≠ γ ′).

This is a consequence of the fact that in the net of Fig. 20 state E is easily shown to be 1-bounded.

5. Related works

Existing research on artifacts — The simpA model and technology are strictly related to the research work on artifacts
for MAS [46], and the CArtAgO infrastructure [43]. While simpA introduces a specific programmingmodel for programming
agents and artifacts, namely to structure concurrent applications on top of Java, CArtAgO is an infrastructure focussed solely
on developing artifacts. As such, it provides an API that agent designers can use to create agents interacting with artifacts.
CArtAgO is designed to be integrated with heterogeneous agent platforms, including fully fledged cognitive ones, with the
goal of extending any agent technology with a support to artifact-based environments.

The artifact abstraction at the core of simpA and CArtAgO is a generalization of coordination artifacts — i.e., artifacts
encapsulating coordination functionalities, introduced in [40]. In A&A, artifacts are the basic building blocks that can be
used to engineer the working environments where agents are situated: the agent environment plays a fundamental role in
MAS engineering, acting as first-class entity encapsulating key responsibilities (functionality, services). This perspective is
explored in several researchworks that have appeared recently inMAS literature: a survey can be found in [54]. By providing

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 59

a general-purpose programming model for artifacts, simpA gives the possibility to program any kind of coordination
artifacts, from simple synchronizers (such as latch and barriers) to more complex ones, such as tuple spaces [18], tuple
centres [38], and even workflow engines [53].
Coordination models and technology — Coordination models like programmable coordination media [14] and tuple
centres [38] have been a main source of inspiration for devising the notion of coordination artifact in multi-agent systems.
Actually, the programming model adopted for artifacts in general has been conceived to ease the implementation of
coordination media, like the simple tuple space shown in Fig. 8, the synchronization barrier and the bounded buffer shown
in Fig. 4. In particular, structured operations – composed bymultiple guarded atomic operation steps – have been introduced
to ease the design and implementation of coordinating behaviors involving the synchronization among actions of different
agents, interacting through the medium, possibly including also information exchange. This model has been inspired – in
particular – by reactions introduced by the tuple centre model (and the ReSpecT language, in particular) as a means to
program the behavior of tuple spaces. Differently from tuple spaces and tuple centres, the adoption of observable events to
model the asynchronous information flow from artifacts to using/observing agents also makes the approach quite effective
for implementing event-driven coordination models, like those derived from the IWIM model [4].
Agent features in OO frameworks — simpA is not the first approach providing an agent-oriented abstraction layer on top
of Java. JADE [7] is probably the most known Java-based agent platform. JADE provides a general-purpose middleware for
developing peer-to-peer distributed agent-based applications, complying with the FIPA standardization aim.9

A main conceptual and practical difference between simpA and JADE concerns the high-level first-class abstractions
adopted to organize a software system: JADE provides agents interacting by means of FIPA ACL (agent communication
language), while simpA provides agents and artifacts — so in JADE every component of a multi-agent system must be
modelled as an agent and there are no explicit first-class abstractions to model the environment. Furthermore, JADE adopts
a behavior-basedmodel for programming agents. From this point of view, activities in simpA are similar to behaviors in JADE,
with themain difference that in simpA the definition of structured activities composed of sub-activities is done declaratively
by defining the activity agenda,while in JADE this is done operationally, by creating and composing objects of specific classes.
In this perspective it is worth remarking that a recent extension of JADE called WADE [11] has independently adopted an
approach more similar to simpA activities, by introducing a class of agents (WorkflowEngineAgent) which are able to
execute workflows of activities.

Besides JADE, other well-known agent-oriented platforms have been developed as an extension of the Java platform:
we cite here JACK,10 and JADEX [41], which differently from JADE and simpA provide a first-class support for programming
intelligent agents, based on the BDI architecture (Beliefs–Desires–Intentions) and the FIPA standards. These approaches – as
withmost other cognitive agent programming platforms – are typically targeted to the engineering of distributed intelligent
systems for complex application domains, not for concurrent programming in general as simpA.
Concurrency in OO languages — The extension of the OO paradigm toward concurrency – namely, object-oriented
concurrent programming (OOCP) – has been (and indeed still is) one of the most important and challenging themes in the
OO research. Accordingly, a large number of theoretical results and approaches have been proposed since the beginning of
the 1980’s, surveyed by works such as [10,56,3]. Among the main examples, actors [1] and active objects [29] have been the
root of entire families of proposals. Among the most recent ones, actors are the reference concurrency model implemented
in Erlang [5,28] (where they are called processes) and Scala [20].

The approach proposed in this paper shares the aim of actor and active objects approaches, i.e., to introduce a general-
purpose abstraction layer to simplify the development of concurrent applications. Differently from actor-based approaches,
in simpA also the passive components of the system are modeled as first-class entities (the artifacts), alongside the active
parts (actors in actor-based systems). Consequently, the interaction model between agents and artifacts, based on use and
observation, is very different from the interaction model among actors, based on asynchronous message passing — adopted
also in simpA for inter-agent communication. Being based essentially on actions and events, this interaction model is quite
different also from the synchronous and asynchronous message passing style adopted in active objects. Then, actor-based
approaches typically do not provide specific constructs to structure the active behavior of an actor, besides the become-
like primitives: this contrasts the activity-based model of simpA, which allows for structuring the behavior in a hierarchy
of activities, possibly specifying declaratively the dependencies among the tasks to be executed as defined in the activity
agenda.

Actually, besides using asynchronous message passing, the basic actor model has been extended so as to have a richer
support for coordination and interaction management. Twomain examples are the research work on synchronizers [17] and
actor spaces [2]. In both cases, further abstractions are introduced besides actors, functioning as coordination media that
make it possible to constrain and shape actor message-based communication. In simpA, these functionalities are provided
by coordination artifacts, these being artifacts specifically programmed to encapsulate and enact coordinating functionalities
for the agents sharing and using them.

On the other hand, artifacts resemble monitors, with some important differences. Analogously to monitors, artifacts
enforce mutual exclusion in the execution of operation (steps). Differently from them, operations – once triggered – are

9 http://www.fipa.org.
10 http://www.agent-software.com.

http://www.fipa.org
http://www.fipa.org
http://www.fipa.org
http://www.fipa.org
http://www.agent-software.com
http://www.agent-software.com
http://www.agent-software.com
http://www.agent-software.com

60 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

executed asynchronously with respect to the (agent) invoker, and guards are adopted to enable/disable/synchronize the
execution of operations (steps) instead of condition variables. Also, differently from monitors, there are no return values
or output parameters in operations, since the interaction model is based on events, and a part of the state (observable
properties) can be directly observed without invoking operations.

Finally, among the many approaches extending OO towards concurrency we mention here SCOOP [34] extending the
Eiffel language, and themore recent Polyphonic C# [8], introducing a very elegant support – groundedon Join Calculus theory
– for the synchronization and coordination of multi-threaded applications. An approach that is similarly based on the Join
Calculus [16] is Join Java [25]. Other approaches include Jeeg [35], which is able to express synchronization conditions on an
object by linear temporal logic constraints involving the value of fields and themethod invocation history of the object; JR [27],
which extends Java, providing a rich concurrency model with a variety of mechanisms for writing parallel and distributed
programs; and StateJ [12], which proposes state classes, a construct for making the state of a concurrent object explicit. The
objective of our approach is significantly more extensive in a sense, because we introduce an abstraction layer which aims
at providing an effective support for tackling not only synchronization and coordination issues, but also the engineering of
passive and active parts of the application, avoiding the direct use of low-level mechanisms such as threads.

The introduction of a higher level of concurrency is also found in JAC [21], which introduces only a few basic constructs
that make it possible to avoid threads and separate thread synchronization from application logic in a declarative fashion.
JAC actually adopts for Java the concept of concurrency annotations similar to the ones introduced by SCOOP: the aim is to
minimize the differences between concurrent and sequential implementations of objects and computations. This is a main
difference with respect to our approach, in which the new abstraction layer is meant to be on top and somewhat orthogonal
to the object-oriented layer: classes and objects in simpA are used as the abstractions to define data structures (with no
concurrent mechanisms), while agents and artifacts as abstractions to organize the concurrent program.
Patterns in concurrent programming — Doug Lea’s patterns for concurrent programming in Java – which are a main
reference also for the java.util.concurrent library – are another main related work [30,19]. Generally speaking, taken
individually, the various features that characterize agents and artifacts in simpA can be related to some specific existing
pattern. For instance: on the artifact side, the guards exploited in operation and operation steps are similar to the guarded
method patterns; on the agent side, the definition and execution of sub-activities (tasks to be executed) in the context of a
structured activity recall the pattern of parallel decomposition, used to structure services in threads.

Actually, complex concurrent programs require the composition and integration of different kinds of pattern. Each
pattern provides an effective and efficient way to solve a specific (recurrent) concurrent programming problem, without
raising the basic abstraction level provided by object-orientation and threads: however, the composition ofmultiple patterns
to create a concurrent program is still a challenging issue, both because such integration is not as simple as the application
of the individual pattern, and because there is no clear formal semantics of the patterns themselves.

An important example concerns the Executor framework (recalled in Section 3.4), available in the java.util.
concurrent library. The framework provides direct support for breaking down a program into tasks and executing tasks
according to execution policies encapsulated in proper objects that hide themanagement of threads. However, the approach
can be used – generally speaking – only if the tasks are fully independent activities, i.e., each task does not depend on the
state, result, or side effects of other tasks submitted to the same executor or other executors. This is because executors
uncouple task execution from threads that execute tasks, so as to create an abstraction barrier between tasks and threads.
Then, if we block the execution of a task – waiting, for instance, for the completion of another task – by exploiting basic
synchronization mechanisms (such as semaphores, barriers, etc.), we are also going to block the thread which is executing
the task. In that waywe break the abstraction barrier: suppose in fact that the task can be unblocked only by the execution of
another task submitted to the same executor, and that nomore threads are available for task execution—because of the kind
of policy chosen for the executor, e.g., fixed thread pool. Thenwe get a deadlock, even if – by reasoning at the task abstraction
level –we should not. So, it is not immediately clear how to extend this approach in a generalway or to integrate itwith other
patterns so as to exploit the task-oriented approach—keeping the decoupling between task submission and task execution
but alsomanaging in a flexibleway possible dependencies among the tasks. This is preciselywhat structured activities inside
simpA agents are useful for. Actually, the Fork–Join framework [31], which will be introduced with Java 7, allows for solving
the problem for a specific – even if quite common – case, which is about running computationally intensive tasks that do
not ever block except to wait – in the join stage – for another task being processed by the same executor.

So, the value of an approach like simpA in this case must be framed more in the direction devised in [50], namely, to
introduce higher-level abstractions that ‘‘help build concurrent programs, just as object-oriented abstractions help build
large component-based programs’’, as recalled in Section 1. We believe that such high abstractions should, on the one hand,
internally exploit as much as possible existing patterns, and, on the other hand, provide a programming model hiding as
much as possible the complexity related to their combined use.

6. Conclusion and future works

More andmore concurrency is going to be part of mainstream programming and software engineering, with applications
able to suitably exploit the inherent concurrency support provided by modern hardware architectures, such as multi-core
architectures, and by network-based environments and related technologies, such as Internet and Web services. This calls
for tackling the problem at the right level of abstraction, and not through low-level mechanisms [50].

A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62 61

Along this line, in this paper we presented simpA, a framework on top of the Java platform that aims at simplifying the
development of concurrent programs by introducing a high-level agent-oriented abstraction layer over the standard OO
layer: alongside a description of the programming framework and its use, we also provided an operational semantics for a
significant subset of the language, based on a calculus of agents and artifacts.

Future works will first of all be focussed on improving the effectiveness of the simpA approach. A main issue is related to
the choice of realizing simpA as an annotation-based framework on top of the basic Java environment. Besides thementioned
advantage related to compatibility and ease of deployment, this choice is less flexible and effective than a solution relying
on an entirely new language for programming agents and artifacts, affecting in particular programming language usability
and program debugging — i.e., using strings in annotations prevents compile-time checking of correctness. This will make
it possible to provide a deeper comparison with the reference programming languages adopted for building concurrent
software — such as Erlang. Compared to the many existing general-purpose programming languages devised for concurrent
programming, the objective of this language will be to investigate the use of the proposed abstractions for general-purpose
programming in the context of concurrent/multi-core and distributed applications. Actually, many agent programming
languages have already been described in the literature [9]: however, these languages are not meant to be general purpose
and are typically targeted to the development of intelligent systems.

The definition of a language will be important also to ease the investigation of further aspects which are important from
a computer programming and software engineering perspective: among others, the notion of type for the agent and artifact
concept and related aspects concerning, for instance, a notion of inheritance and extension to support specialization and
reuse for such abstractions. These issues have been already investigated, for instance, in the context of object-oriented
concurrent languages, leading to the identification of well-known problems like the inheritance anomaly [33]. So, the
language and related investigation will be useful also to understand if and how an agent-oriented abstraction layer makes
it possible to frame these problems in a different way, possibly providing new kinds of solutions.

Another research direction concerns the analysis of properties of simpA programs. As mentioned, our plan for tackling
this problem is to conceive a type systemon top of the proposed calculus, bywhich itwould be possible to intercept standard
typing errors (e.g. accessing a non-defined field or operation), but also behavioral errors related to the possible computation
paths (like reading memos that are surely not present, or declaring guards that cannot be positively evaluated). The goal of
this research line is to ground the development of a fully featured compiler for the simpA approach.

Finally, an interesting work is to identify a small abstract core calculus based on agents and artifacts, which can be a
suitable basis for systematically analysis the properties of systems of agents and artifacts. First investigations about this point
can be found in [13], while future research will also be devoted to finding the suitable formal framework for specifying the
language semantics, possibly relying on modular operational semantics [37], formalization by abstract machines as in [49],
and barbed congruence [48].

References

[1] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge, MA, USA, 1986.
[2] G. Agha, C.J. Callsen, ActorSpace: an open distributed programming paradigm, SIGPLAN Not. 28 (7) (1993) 23–32.
[3] G. Agha, P. Wegner, A. Yonezawa (Eds.), Research Directions in Concurrent Object-oriented Programming, MIT Press, Cambridge, MA, USA, 1993.
[4] F. Arbab, The IWIM model for coordination of concurrent activities, in: COORDINATION ’96: Proceedings of the First International Conference on

Coordination Languages and Models, Springer-Verlag, London, UK, 1996, pp. 34–56.
[5] J. Armstrong, Programming Erlang: Software for a Concurrent World, Pragmatic Bookshelf, 2007.
[6] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, Decidability of bisimulation equivalence for processes generating context-free languages, in: PARLE, Parallel

Architectures and Languages Europe, Volume I: Parallel Languages, in: Lecture Notes in Computer Science, vol. 259, Springer, 1987, pp. 94–111.
[7] F.L. Bellifemine, G. Caire, D. Greenwood, Developing Multi-Agent Systems with JADE, Wiley, 2007.
[8] N. Benton, L. Cardelli, C. Fournet, Modern concurrency abstractions for C#, ACM Trans. Program. Lang. Syst. 26 (5) (2004) 769–804.
[9] R. Bordini, M. Dastani, J. Dix, A. El Fallah Seghrouchni (Eds.), Multi-Agent Programming Languages, Platforms and Applications, vol. 15, Springer, 2005.

[10] J.-P. Briot, R. Guerraoui, K.-P. Lohr, Concurrency and distribution in object-oriented programming, ACM Comput. Surv. 30 (3) (1998) 291–329.
[11] G. Caire, D. Gotta, M. Banzi, WADE: a software platform to develop mission critical applications exploiting agents and workflows, in: AAMAS ’08:

Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2008, pp. 29–36.

[12] F. Damiani, E. Giachino, P. Giannini, S. Drossopoulou, A type safe state abstraction for coordination in Java-like languages, Acta Inf. 45 (7–8) (2008)
479–536.

[13] F. Damiani, P. Giannini, A. Ricci, M. Viroli, Featherweight agent language — a core calculus for agents and artifacts, in: B. Shishkov, J. Cordeiro,
A. Ranchordas (Eds.), ICSOFT 2009 — Proceedings of the 4th International Conference on Software and Data Technologies, Volume 1, Sofia, Bulgaria,
July 26–29, 2009, INSTICC Press, 2009, pp. 218–225.

[14] E. Denti, A. Natali, A. Omicini, Programmable coordinationmedia, in: D. Garlan, D. LeMétayer (Eds.), Coordination Languages andModels – Proceedings
of the 2nd International Conference (COORDINATION’97), Berlin (D), 1–3 Sept. 1997, in: LNCS, vol. 1282, Springer-Verlag, 1997, pp. 274–288.

[15] C. Dufourd, A. Finkel, P. Schnoebelen, Reset nets between decidability and undecidability, in: Automata, Languages and Programming, 25th
International Colloquium, ICALP’98, Aalborg, Denmark, July 13–17, 1998, Proceedings, in: Lecture Notes in Computer Science, vol. 1443, Springer,
1998, pp. 103–115.

[16] C. Fournet, G. Gonthier, The reflexive chemical abstract machine and the join calculus, in: POPL’96, ACM, 1996, pp. 372–385.
[17] S. Frolund, G. Agha, Abstracting interactions based on message sets, in: ECOOP ’94: Selected Papers from the ECOOP’94 Workshop on Models and

Languages for Coordination of Parallelism and Distribution, Object-Based Models and Languages for Concurrent Systems, Springer-Verlag, London,
UK, 1995, pp. 107–124.

[18] D. Gelernter, Generative communication in Linda, ACM Trans. Program. Lang. Syst. 7 (1) (1985) 80–112.
[19] B. Goetz, et al., Java Concurrency in Practice, Addison-Wesley, 2006.
[20] P. Haller, M. Odersky, Scala actors: unifying thread-based and event-based programming, Theoret. Comput. Sci. (2008).
[21] M. Haustein, K.-P. Loehr, JAC: declarative Java concurrency: research articles, Concurr. Comput.: Pract. Exper. 18 (5) (2006) 519–546.
[22] A. Igarashi, B.C. Pierce, P. Wadler, Featherweight Java: a minimal core calculus for Java and GJ, ACM Trans. Program. Lang. Syst. 23 (2001) 396–450.

62 A. Ricci et al. / Science of Computer Programming 76 (2011) 37–62

[23] A. Igarashi, M. Viroli, Variant parametric types: a flexible subtyping scheme for generics, ACM Trans. Program. Lang. Syst. 28 (5) (2006) 795–847.
[24] C. Iglesias, M. Garrijo, J. Gonzalez, A survey of agent-oriented methodologies, in: J. Müller, M.P. Singh, A.S. Rao (Eds.), in: Proceedings of the 5th

International Workshop on Intelligent Agents V: Agent Theories, Architectures, and Languages, ATAL-98, vol. 1555, Springer-Verlag, Heidelberg,
Germany, 1999, pp. 317–330.

[25] G.S. Itzstein, D. Kearney, Join Java: an alternative concurrency semantics for Java, Technical Report ACRC-01-001, University of South Australia, 2001.
[26] N.R. Jennings, An agent-based approach for building complex software systems, Commun. ACM 44 (4) (2001) 35–41.
[27] A.W. Keen, T. Ge, J.T. Maris, R.A. Olsson, JR: flexible distributed programming in an extended Java, TOPLAS 26 (3) (2004) 578–608.
[28] J. Larson, Erlang for concurrent programming, Commun. ACM 52 (3) (2009) 48–56.
[29] R.G. Lavender, D.C. Schmidt, Active object: an object behavioral pattern for concurrent programming, in: Pattern Languages of Program Design 2,

Addison-Wesley, Longman Publishing Co., Inc., Boston, MA, USA, 1996, pp. 483–499.
[30] D. Lea, Concurrent Programming in Java: Design Principles and Patterns, Addison-Wesley, 1999.
[31] D. Lea, A Java Fork/Join framework, in: JAVA ’00: Proceedings of the ACM 2000 Conference on Java Grande, ACM, New York, NY, USA, 2000, pp. 36–43.
[32] D. Lea, The java.util.concurrent synchronizer framework, Sci. Comput. Programming 58 (3) (2005) 293–309.
[33] S.Matsuoka, A. Yonezawa, Analysis of inheritance anomaly in object-oriented concurrent programming languages, in: G. Agha, A. Yonezawa, P.Wegner

(Eds.), Research Directions in Concurrent Object-Oriented Programming, The MIT Press, 1993.
[34] B. Meyer, Systematic concurrent object-oriented programming, Commun. ACM 36 (9) (1993) 56–80.
[35] G. Milicia, V. Sassone, Jeeg: temporal constraints for the synchronization of concurrent objects, Concurr. Comput.: Pract. Exper. 17 (5–6) (2005)

539–572.
[36] R. Milner, Communicating and Mobile Systems: The π-calculus, Cambridge University Press, 1999.
[37] P.D. Mosses, Modular structural operational semantics, J. Log. Algebr. Program. 60–61 (2004) 195–228.
[38] A. Omicini, E. Denti, From tuple spaces to tuple centres, Sci. Comput. Programming 41 (3) (2001) 277–294.
[39] A. Omicini, A. Ricci, M. Viroli, Artifacts in the A&A meta-model for multi-agent systems, Auton. Agents and Multi-Agent Syst. 19 (2009) Special Issue

on Foundations, Advanced Topics and Industrial Perspectives of Multi-Agent Systems.
[40] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, L. Tummolini, Coordination artifacts: environment-based coordination for intelligent agents,

in: AAMAS’04, vol. 1, ACM, New York, USA, 19–23 July, 2004, pp. 286–293.
[41] A. Pokahr, L. Braubach,W. Lamersdorf, Jadex: a BDI reasoning engine, in: R. Bordini,M. Dastani, J. Dix, A. Seghrouchni (Eds.),Multi-Agent Programming,

Kluwer, 2005.
[42] M. Resnick, Turtles, Termites and Traffic Jams. Explorations in Massively Parallel Microworlds, MIT Press, 1994.
[43] A. Ricci, M. Piunti, M. Viroli, A. Omicini, Environment programming in CArtAgO, in: R.H. Bordini, M. Dastani, J. Dix, A. El Fallah-Seghrouchni (Eds.),

Multi-Agent Programming: Languages, Platforms and Applications, vol. 2, Springer, 2009, pp. 259–288.
[44] A. Ricci, M. Viroli, simpA: An agent-oriented approach for prototyping concurrent applications on top of Java, in: V. Amaral, L. Veiga, L. Marcelino,

H.C. Cunningham (Eds.), 5th International Conference, Principles and Practice of Programming in Java, PPPJ 2007, Lisbon, Portugal, 5–7 September
2007, pp. 185–194.

[45] A. Ricci, M. Viroli, M. Cimadamore, Prototyping concurrent systems with agents and artifacts: framework and core calculus, in: 6th International
Workshop on Foundations of Coordination Languages and Software Architectures, FOCLASA’07, CONCUR’07, Lisbon, Portugal, 8 September 2007.
Proceedings, Electron. Notes Theor. Comput. Sci. 194 (4) (2008) 111–132.

[46] A. Ricci, M. Viroli, A. Omicini, Give agents their artifacts: the A&A approach for engineering working environments in MAS, in: E. Durfee, M. Yokoo,
M. Huhns, O. Shehory (Eds.), 6th International Joint Conference Autonomous Agents & Multi-Agent Systems, AAMAS 2007, IFAAMAS, Honolulu,
Hawai’i, USA, 14–18 May 2007, 2007, pp. 601–603.

[47] A. Ricci, M. Viroli, G. Piancastelli, simpA: a simple agent-oriented Java extension for developing concurrent applications, in: Languages, Methodologies
and Development Tools for Multi-Agent Systems, in: LNCS, vol. 5118/2008, Springer, Berlin, Heidelberg, July 2008, pp. 261–278, First International
Workshop, LADS 2007, Durham, UK, September 4–6, 2007, Revised Selected Papers.

[48] D. Sangiorgi, D. Walker, On barbed equivalences in pi-calculus, in: CONCUR 2001 — Concurrency Theory, 12th International Conference, Aalborg,
Denmark, August 20–25, 2001, Proceedings, in: Lecture Notes in Computer Science, vol. 2154, Springer, 2001, pp. 292–304.

[49] P. Sewell, On implementations and semantics of a concurrent programming language, in: CONCUR ’97: Concurrency Theory, 8th International
Conference, Warsaw, Poland, July 1–4, 1997, Proceedings, in: Lecture Notes in Computer Science, vol. 1243, Springer, 1997, pp. 391–405.

[50] H. Sutter, J. Larus, Software and the concurrency revolution, ACM Queue: Tomorrow’s Comput. Today 3 (7) (2005) 54–62.
[51] H. Velroyen, P. Rümmer, Non-termination checking for imperative programs, in: Tests and Proofs, in: Lecture Notes in Computer Science,

vol. 4966/2008, Springer, 2008, pp. 154–170.
[52] M. Viroli, A core calculus for correlation in orchestration languages, J. Log. Algebr. Program. 70 (1) (2007) 74–95, Special Issue on Web Services and

Formal Methods.
[53] M. Viroli, E. Denti, A. Ricci, Engineering a BPEL orchestration engine as a multi-agent system, Sci. Comput. Programming 66 (3) (2007) 226–245.
[54] D. Weyns, H.V.D. Parunak (Eds.), J. Auton. Agents Multi-Agent Syst. 14 (1) (2007) Special Issue: Environment for Multi-Agent Systems.
[55] A.K. Wright, M. Felleisen, A syntactic approach to type soundness, Inform. Comput. 115 (1) (1994) 38–94.
[56] A. Yonezawa, M. Tokoro (Eds.), Object-oriented Concurrent Programming, MIT Press, Cambridge, MA, USA, 1986.

	simpA: An agent-oriented approach for programming concurrent applications on top of Java
	Introduction
	simpA overview
	Main concepts
	Programming agents
	Defining agent activities
	Agent memory
	Agents with cyclic behavior

	Programming artifacts
	Artifact structure and behavior
	Usage interface controls with guards
	Structured operations

	Agent--artifact interaction model
	Using artifacts
	Perceiving observable events
	Observation

	Programming examples and discussion
	Abstraction and separation of concerns
	Modularity
	Modularity in agents
	Modularity in artifacts

	Decentralization and coordination
	Decoupling logical and physical concurrency
	Concurrency bugs and properties

	Operational semantics
	Abstract syntax
	Configurations
	Evaluation contexts
	Operational semantics: execution of instructions
	Operational semantics: agent and artifact abstract machines
	Well-formedness and properties

	Related works
	Conclusion and future works
	References

