1. Берлинер М. А. Измерения влажности.- М.: Издательство "Энергия"., 1973.-400 с.

2. Бензарь В. К. Техника СВЧ-влагометрии.- Минск.: "Вышэйшая школа"., 1974.-352 с.

3. Кричевский Е. С., Волченко А. Г. Контроль влажности твердых и сыпучих материалов. - М.: Энергоатомиздат., 1980.-165 с.


Обзор и классификация методов измерения влажности

Методы измерения влажности принято делить на прямые и косвенные. В прямых методах производится непосредственное разделение материала на сухое вещество и влагу. В косвенных методах измеряется величина, функционально связанная с влажностью материала. Косвенные методы требуют предварительной калибровки с целью установления зависимости между влажностью материала и измеряемой величиной.

Прямые методы

Наиболее распространенным методом является метод высушивания (термогидравлический), заключающийся в воздушно-тепловой сушке образца материала до достижения равновесия с окружающей средой; это равновесие условно считается равнозначным полному удалению влаги. На практике применяется высушивание до постоянного веса; чаще всего применяют так называемые ускоренные методы сушки. В первом методе сушку заканчивают, если два последовательных взвешивания исследуемого образцадают одинаковые или весьма близкие результаты. Так как скорость сушки постепенно уменьшается, предполагается, что при этом удаляется почти вся влага, содержащаяся в образце. Длительность определения этим методом составляет обычно от нескольких часов до суток и более. В ускоренных методах сушка ведется в течение определенного, значительно более короткого промежутка времени при повышенной температуре ( например, стандартный метод определения влажности зерна сушкой размолотой навески при +130 градусах в течение 40 минут).

Определению влажности твердых материалов высушиванием присущи следующие методические погрешности:

а) при высушивании органических материалов наряду с потерями гигроскопической влаги происходит потеря летучих; одновременно при сушке в воздухе имеет место поглощение кислорода вследствие окисления вещества, а иногда и термическое разложение пробы;

б) прекращение сушки соответствует не полному удалению влаги, а равновесию между давлением водяных паров в материале и давлением водяных паров в воздухе;

в) удаление связанной влаги в коллоидных материалах невозможно без разрушения коллоидальной частицы и не достигается при высушивании;

г) в некоторых веществах в ходе сушки образуется водонепроницаемая корка, препятствующая дальнейшему удалению влаги.

Некоторые из указанных погрешностей можно уменьшить сушкой в вакууме при пониженной температуре или в потоке инертного газа. Однако для вакуумной сушки требуется более громоздкая и сложная аппаратура, чем для воздушно-тепловой.

При наиболее распространенном методе сушке (в сушильных шкафах) имеются погрешности, зависящие от применяемой аппаратуры и техники высушивания. Так, например, результаты определения влажности зависят от длительности сушки, от температуры и атмосферного давления, при которых протекала сушка. Температура имеет особенно большое значение при использовании ускоренных методов, когда понижение температуры сильно влияет на количество удаленной влаги. На результаты высушивания влияют также форма и размеры бюкс и сушильного шкафа, распределение температуры в сушильном шкафу, скорость движения воздуха в нем, возможность уноса пыли или мелких частиц образца и т. д. Для материалов, подвергающихся перед определением влажности измельчению, большое значение имеет убыль влаги в образце в процессе измельчения. Эта убыль особенно велика, если при размоле имеет место нагрев образца.

В итоге высушивание представляет собой чисто эмпирический метод, которым определяется не истинная величина влажности, а некая условная величина, более или менее близкая к ней. Определения влажности, выполненные в неодинаковых условиях, дают плохо сопоставимые результаты. Значительно более точные результаты дает вакуумная сушка, выполняемая обычно в камере при давлении 25 мм рт. ст. и ниже до постоянного веса.

В дистиляционных методах образец подогревается в сосуде с определенным количеством жидкости, не смешивающейся с водой. Выделяющиеся пары воды вместе с парами жидкости подвергаются отгонке и, проходя через холодильник, конденсируются в измерительном сосуде, в котором измеряется объем или масса воды.

Экстракционные методы основаны на извлечении влаги из исследуемого образца водопоглощающей жидкостью и определении характеристик жидкого экстракта, зависящих от его влагосодержания - плотности, показателя преломления, температуры кипения или замерзания и т. д.

Основой химических методов является обработка образца реагентом, вступающим в химическую реакцию только с влагой, содержащейся в образце. Количество воды в образце определяется по количеству жидкого или газообразного продукта реакции. Так для зерна можно использовать титрирование К. Фишера

Косвенные методы

В этих методах оценка влажности производится по изменению различных его свойств.

Механические методы основаны на измерении изменяющихся с влажностью механических характеристик твердых материалов (сопротивление раздавливанию зерна).

Методы, основанные на измерении неэлектрических свойств материалов.

Радиометрические методы базируются в основном на современных способах исследования состава, структуры и свойств вещества, использующих взаимодействие различных видов электромагнитных колебаний и ядерных излучений с исследуемым веществом. В радиометрических (ядерно-физических) методах используются различные виды ядерных излучений (гамма-лучи, бета-частицы, быстрые нейтроны) и взаимодействий (поглощение и рассеяние гамма- и бета-излучения, упругое рассеяние быстрых нейтронов). Так, например, в основе гамма-методов лежит ослабление интенсивности гамма- излучения твердой фазой и влагой зерна в результате рассеяния и поглощения атомами вещетства.

В основе метода ядерного магнитного резонанса (ЯМР) лежит резонансное поглощение радиочастотной энергии ядрами атомов водорода (протонами) воды при помещении влажного материала а постоянное магнитное поле. Явление ЯМР связано с квантовыми переходами между зеемановскими энергетическими уровнями атомных ядер, возникающими в результате взаимодействия ядерного магнитного момента с внешним магнитным полем.

Оптические методы основаны на зависимости оптических свойств материалов от их влагосодержания. Для твердых материалов используется инфракрасная и видимая области спектра.

Теплофизические методы основаны на зависимости от влажности материала его теплофизических свойств - коэффициента теплопроводности, удельной теплоемкости и коэффициента температуропроводности.

Электрические методы измерения влажности.

Основой электрических методов измерения влажности является зависимость от влажности параметров, характеризующих поведение влажных материалов в электрических полях. Кондуктометрические методы основаны на измерении электрической проводимости материала на постоянном токе и переменном токе промышленной или звуковой частоты.

Влагосодержащие материалы, являясь в сухом виде диэлектриками, в результате увлажнения становятся полупроводниками. Удельное сопротивление изменяется, следовательно, в зависимости от влажности в чрезвычайно широком диапазоне, охватывающем 12-18 порядков. Неоднородность диэлектрика, наличие в нем влаги сказываются не только на величине удельной проводимости, но и на качественных особенностях электропроводности: на ее зависимости от напряженности электрического поля и температуры.

Электропроводность твердого материала определяется электролитами, растворенными в воде; эти электролиты содержатся главным образом в самом материале. При этом характер зависимости удельной электропроводности материала от содержания влаги определяется распределением влаги в нем, зависящим в свою очередь от пористой структуры материала, формы пор, их размеров и характера распределения.

В диэлькометрическом методе чаще всего используется средневолновой и коротковолновой диапазоны частот или сверхвысокие частоты.

Поведение диэлектрика в синусоидальном электромагнитном поле характеризуется величинами комплексной диэлектрической и магнитной проницаемостей. У влажных материалов, не содержащих ферромагнетиков, величина (магнитной проницаемости пустоты) и их электрические свойства в слабых переменных электрических полях можно описать двумя параметрами, связанными с . При измерении влажности используются следующие пары величин:

а) вещественная и мнимая составляющие комплексной диэлектрической проницаемости;

б) диэлектрическая проницаемость и тангенс угла диэлектрических потерь;

в) диэлектрическая проницаемость и удельная проводимость (ее активная составляющая).

Рассмотрим методы СВЧ-влагометрии, которые классифицируют на:

- методы, основанные на измерении характеристик поля стоячих волн;

- методы, основанные на измерении характеристик поля волн, прошедших через влажный материал (оптические методы).

К первой группе методов относятся:

а) метод, основанный на измерении поля стоячей волны в образце исследуемого диэлектрика. Основывается на вычислении диэлектрической проницаемости влажного материала, которая является функцией влагосодержания, по результатам измерения величины фазовой части постоянной распространения. Практически измерения сводятся к определению длин волн в системе без диэлектрика и с диэлектриком.

б) метод, основанный на изучении поля стоячих волн, возникающих при отражении электромагнитной энергии от образца исследуемого материала. Сущность метода состоит в определении постоянной распространения в образце измеряемого материала путем изучения картины распределения стоячей волны на участке линии, не заполненной диэлектриком;

в) метод, основанный на использовании волн, отраженных от поверхности измеряемого образца. В этом случае для определения диэлектрической проницаемости используют параметры волны, возникшей в результате взаимодействия падающей и отраженной волн;

г) резонансный метод основан на измерении параметров резонатора при внесении в него исследуемого материала. Измеряя частоты резонатора, определяют диэлектрическую проницаемость , а измеряя ее добротность, определяют коэффициент потерь.

Вторая группа методов основана на исследовании характеристик электромагнитной волны, прошедшей через образец испытуемого материала, путем сравнения с характеристиками волны, распространяющейся по другому пути, или волны, распространяющейся по тому же пути, но при отсутствии материала. Измерения сводятся к определению комплексного коэффициента передачи участка направляющей системы, заполненной исследуемым веществом (коэффициентов поглощения и отражения, как функции влагосодержания). Такой системой может являться как волновод, частично или полностью заполненный материалом, так и область свободного пространства, в которой распространяются электромагнитные колебания СВЧ.

Оптические методы получили наибольшее, поскольку их характерной особенностью является бесконтактность измерений, возможность интегральной оценки влажности в больших объемах (большая информационная емкость метода). Последнее является важным достоинством, так как в реальных производственных условиях всегда наблюдается неравномерное распределение влаги в объеме.


Главная страница Диссертация Электронная библиотека Ссылки Поиск