Главная страница ДонНТУ              Портал магистров ДонНТУ

Автобиография          Автореферат          Перечень ссылок           Индивидуальное задание          Отчет о поиске          Электронная библиотека

Дискретное вейвлет-преобразование

Евтушенко В.А. «Руководство по Вейвлет анализу» 1994. - 1-4 с. Перевод с английского на русский, в данной статье содержиться информация о Вейвлет преобразованиях.


         Вейвлеты — это семейство функций, которые локальны во времени и по частоте «маленькие», и в которых все функции получаются из одной посредством её сдвигов и растяжений по оси времени (так что они «идут друг за другом»). Иногда вейвлеты называют всплесками.
         Все вейвлет-преобразования рассматривают функцию (взятую будучи функцией от времени) в терминах колебаний, локализованных по времени и частоте. Вейвлет-преобразования обычно делят на дискретное вейвлет-преобразование (ДВП) и непрерывное вейвлет-преобразование (НВП). Если рассматривать применение, то ДВП обычно используется для кодирования сигналов, в то время как НВП для анализа сигналов. В результате, ДВП широко применяется в инженерном деле и компьютерных науках, а НВП в научных исследованиях. Вейвлет-преобразования в настоящее время приняты на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье во многих применениях. Эта смена парадигмы наблюдается во многих областях физики, включая молекулярную динамику, вычисления ab initio, астрофизику, локализацию матрицы плотности, сейсмическую геофизику, оптику, турбулентность, квантовую механику, обработку изображений, анализы кровяного давления, пульса и ЭКГ, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов, распознавание речи, компьютерную графику и мультифрактальный анализ и другие. Разработка вейвлетов связана с несколькими отдельными нитями рассуждений, начавшимися с работ Хаара в начале двадцатого века. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морле, сформулировавшие то, что сейчас известно как НВП (1982), Жан Олаф-Стромберг с ранними работами по дискретным вейвлетам (1983), Добеши, разработавшая ортогональные вейвлеты с компактным носителем (1988), Малла, предложивший кратномасштабный метод (1989), Натали Делпрат, создавшая временно-частотную интерпретацию CWT (1991), Ньюланд, разработавший гармоническое вейвлет-преобразование и многие другие.

Теория Вейвлетов


        Теория вейвлетов связана с несколькими другими методиками. Все вейвлет-преобразования могут рассматриваться как разновидность временно-частотного представления и, следовательно относятся к предмету гармонического анализа. Дискретное вейвлет преобразование может рассматриваться как разновидность фильтра конечного импульсного отклика. Вейвлеты, образующие НВП подчиняются принципу неопределенности Гейзенберга и соответственно базис дискретного вейвлета также может рассматриваться в контексте других форм принципа неопределённости.

Дискретные вейвлет-преобразования

В численном анализе и функциональном анализе дискретные вейвлет-преобразования (ДВП) относятся к вейвлет-преобразованиям, в которых вейвлеты представлены дискретными сигналами (выборками). Первое ДВП было придумано венгерским математиком Альфредом Хааром. Для входного сигнала, представленного массивом 2n чисел, вейвлет-преобразование Хаара просто группирует элементы по 2 и образует от них суммы и разности. Группировка сумм проводится рекурсивно (в случае чётной длины последовательности сумм) для образования следующего уровня разложения. В итоге получается 2n - 1 разность и 1 общая сумма.
        Это простое ДВП иллюстрирует общие полезные свойства вейвлетов. Во-первых, преобразование (один уровень) можно выполнить за O(n) операций. Во-вторых, оно не только раскладывает сигнал на некоторое подобие частотных полос (путём анализа его в различных масштабах), но и представляет временну?ю область, т. е. моменты возникновения тех или иных частот в сигнале. Вместе, эти свойства характеризуют быстрое вейвлет-преобразование — альтернативу обычному быстрому преобразованию Фурье.

        Самый распространенный набор дискретных вейвлет-преобразований был сформулирован бельгийским математиком Ингрид Добеши (Ingrid Daubechies) в 1988 году. Он основан на использовании рекуррентных соотношений для вычисления всё более точных выборок неявно заданной функции материнского вейвлета, с удвоением разрешения при переходе к следующему уровню (масштабу). В своей основополагающей работе Добеши выводит семейство вейвлетов, первый из которых является вейвлетом Хаара.
        С тех пор интерес к этой области быстро возрос, что привело к созданию многочисленных потомков исходного семейства вейвлетов Добеши. Другие формы дискретного вейвлет-преобразования включают непрореженное вейвлет-преобразование (где не выполняется прореживания сигналов), преобразование Ньюлэнда (где ортонормированный базис вейвлетов выводится из специальным образом построенных фильтров типа "top-hat" в частотной области). Пакетные вейвлет-преобразования также связаны с ДВП. Другая форма ДВП - комплексное вейвлет-преобразование. У дискретного вейвлет-преобразования много приложений в естественных науках, инженерном деле, математике (включая прикладную). Наиболее широко ДВП используется в кодировании сигналов, где свойства преобразования используются для уменьшения избыточности в представлении дискретных сигналов, часто - как первый этап в компрессии данных.

Непрерывное вейвлет-преобразование


        Непрерывное вейвлет-преобразование (англ. continuous wavelet transform, CWT) — вейвлет-преобразование, определяемое как

        где t представляет трансляцию, s представляет масштаб и f(t) — вейвлет-родитель (mother wavelet).
        Изначальная функция может быть восстановлена с помощью обратного преобразования

        где

        называется постоянной допустимости и F — преобразование Фурье от psi. Для того, чтобы обратное преобразование было успешным, постоянная допустимости должна соответствовать критерию допустимости

        Примеры материнских Вейвлетов:

        Также следует отметить, что критерий допустимости подразумевает, что Ps(0) = 0, так что интеграл от вейвлета должен быть равен нулю. Вейвлет-родитель (mother wavelet) связан с вейвлетом-потомком (daughter wavelet) следующим соотношением:

Применение вейвлет преобразования

Одним из наиболее популярных приложений вейвлет преобразования является сжатия изображения. Преимущество использования вейвлет-кодирования на основе сжатия изображения заключается в том, что он обеспечивает значительное улучшение качества изображения на более высоких коэффициентов сжатия по сравнению с традиционными методами. Поскольку вейвлет-преобразование имеет способность разлагаться сложной информации и моделей на элементарные формы, оно широко используется в акустике обработки и распознавания образов. Кроме того, вейвлет-преобразований могут быть применены к следующим научно-исследовательских областях: кромки и угол обнаружения, частичное решение дифференциального уравнения, преходящих обнаружения, фильтр, проектирование, электрокардиографы (ЭКГ) анализ, анализ текстуры и бизнес-анализа информации.
Биография            Результаты поиска            Ссылки по теме            Автореферат           Индивидуальное задание          Электронная библиотека


Главная страница ДонНТУ              Портал магистров ДонНТУ