Факультет Физико-металлургический
Кафедра Промышленная теплоэнергетика
Специальность Теплоэнергетика
Тема магистерской работы Существующая проблема при эксплуатации жаротрубных котлов малой мощности в котельных организаций бюджетной сферы.
Научный руководитель Сафонова Елена Константиновна
 

Автореферат

За период с 1999 по 2009 год кафедрой "Промышленная теплоэнергетика" был проведен ряд энергетический обследований котельных региона, которые показали, что большинство котельных Донецкой области (а это более 300) было построено и введено в эксплуатацию в 60х-70х года 20 века. Оборудование физически и морально изношено. Более 100 котлов имеют эксплуатационный срок более 20 лет, а 95 котлов - более 30 лет. Естественно, такие котлы имеют низкий коэффициент полезного действия (около 70%), что приводит к неоправданному перерасходу газа, и, как следствие, высоким тарифам на тепло и горячую воду. Такое оборудование требует замены, поэтому в период с 2000 по 2009 год было уставновлено большое количество новых котлов, в том числе и жаротрубных.

Развитие конструкций жаротрубных котлов

Развитие конструкций паровых и водогрейных котлов в начале своего пути шло по двум основным направлениям – газотрубный и водотрубный способ нагрева теплоносителя. В первом случае продукты сгорания двигались изнутри разделительной поверхности, а вода омывала поверхность нагрева снаружи, во втором случае теплоноситель двигался внутри, а дымовые газы – снаружи.
Газотрубные котлы обычно делали состоящими из горизонтального цилиндра и двух или трёх   труб относительно большого диаметра (жаротрубные котлы) или пучка труб малого диаметра (дымогарные котлы). Большее распространение вначале получили именно жаротрубные котлы, так как ручная колосниковая решётка располагалась внутри жаровых труб, и в результате этого удавалось получить высокоэффективную радиационную поверхность нагрева, экранирующую пламя практически полностью. В этом случае при глубоком охлаждении дымовых газов отпадала необходимость установки и последующего ремонта огнеупорной кладки.
Тип котлов с дымогарными трубками обычно позволял получить в единице объёма основного барабана большую поверхность нагрева (150…180 м2) в сравнении с жаротрубными котлами с барабаном одинаковой длины. Следовательно, при тех же размерах паропроизводительность была выше.
Наибольшую поверхность нагрева (до 300 м2) имели комбинированные газотрубные котлы, у которых топкой являлась жаровая труба, а конвективной поверхностью – дымогарные трубки. Однако в обоих случаях паропроизводительность лимитировалась величиной 2…4 т/час из-за роста габаритов топки и увеличении металлоёмкости котла.  Другой сдерживающей причиной роста распространения таких котлов являлась трудность обеспечения высоких параметров пара из-за металлоёмкости основного барабана и сложностью выполнения прочных днищ (особенно в дымогарных котлах).
Наибольшим распространением комбинированных газотрубных котлов являлись паровозные котлы; при достаточно сложной конструкции и массивности укрепляющих связей известны случаи производства парового котла для паровоза ФД  в 1931 г. паропроизводительностью до 20 т/ч.
В последних случаях кроме всего приходилось форсировать топку, чтобы получить высокую паропроизводительность. Соответственно КПД таких котлов был низок (50…60%).
Среди промышленных котлов, наиболее часто встречавшихся в СССР, являются горизонтальные жаротрубно-водотрубные котлы КВ-200М, «Кивиыли» и др.
Наряду с горизонтальным расположением котла следует упомянуть и о вертикальных газотрубных котлах малой мощности, сконструированных ещё в 19 веке и, тем не менее, до сих пор встречающихся на харьковских предприятиях. Одними из наиболее удачных котлов этого типа был вертикальный котел Шухова и ряд котлов, являющихся продолжением такой конструкции. В этом случае верхняя часть жаровой трубы проходит сквозь паровое пространство и, следовательно, плохо охлаждается. Поэтому температура газов, проходящих по этой части трубы, должна быть невысокой (при длительной работе не выше 500—550° С). Для снижения температуры размещали в жаровой трубе дополнительную поверхность нагрева, обычно в виде пучков наклонных труб, омываемых газами снаружи.
Перечисленные недостатки привели к тому, что на долгое время от использования жаротрубных и дымогарных котлов отказались, они были полностью сняты с производства, и в СССР была принята концепция использования водотрубных конструкций котлов. Такие котлы при их установке в котельной подлежали обмуровке кирпичом или нанесением защитного покрытия слоем жаростойкой изоляции.
На Западе была принята иная концепция. Такая концепция наряду с сохранением выпуска водотрубных котлов предполагала выпуск для собственных нужд и, особенно для продажи на внешнем рынке компактных готовых к установке и внедрению котельных установок высокой эффективности. Таким образом, был налажен выпуск и внедрение газоплотных котлов с одной автоматизированной  блочной горелкой (реже – с двумя), не требующих установки высокозатратных дымососов и регулирования разрежения в топке, и приходящих к покупателю уже защищенными слоем современной тепловой изоляции.

Конструкция ГЖК

Среди разнообразия производителей газовых жаротрубных котлов в то же время схемы движения дымовых газов и воды похожи. Для большинства котлов (КСВа «ВК-34», «Колві», «Вулкан», РИО, SuperRAC, некоторые модели Vitoplex) - это двухходовая схема с реверсивной топкой или инверсией пламени, рис.1. Обычно в таких схемах топка расположена строго соосно с корпусом котла или в нижней части корпуса. Продукты сгорания достигают плоского дна топки, разворачиваются и по периферии поступают к передней крышке котла. Далее, дымовые газы разворачиваются на 180° и поступают в конвективный газоход – в дымогарные трубы второго хода. Пройдя второй ход, газы поступают в сборный дымовой короб и, оттуда, в газоход и дымовую трубу. Расположение дымогарных труб может выполняться как симметрично по отношению к оси котла, так и отдельным пакетом, расположенным выше топки. Передняя стенка может быть водоохлаждаемой, как, например, для котлов «РИО»,  «Ника» или «ВК», так и неохлаждаемой, с усиленной футеровкой.
Схема1 

Рис. 1. Схематический разрез двухходового жаротрубного  котла с реверсивной топкой и коаксиальным расположением второго хода дымогарных труб.Передняя дверца - неохлаждаема

Следует отметить, что в некоторых моделях ГЖК («Ника» и др.) дымовые газы из жаровой трубы попадают в дымогарные трубки, поворачиваясь в задней крышке, поступают к фронту. Далее по газоходу, расположенному над наружной обечайкой, удаляются в сборный газоход. Соответственно, задняя крышка в этом случае делается либо водоохлаждаемой, либо с усиленной футеровкой.
Жаровая труба и дымогарные трубы в местах прохода через переднюю и заднюю стенки имеют сварные соединения. Жаровая труба, проходя всем сечением через заднюю стенку, образует, таким образом, большую демпфирующую поверхность, выполняющую функцию продольного анкера.
Вовнутрь дымогарных труб чаще помещают спиралеобразные турбулизаторы (турбуляторы) для интенсификации теплообмена.
Котлы КСВа «ВК» выпускаются нескольких модификаций. Модель КСВа «ВК-34» –стандартные ГЖК с реверсивной топкой и расположением дымогарных труб второго хода отдельным пакетом выше жаровой трубы, в моделях КСВа «ВК-21», «ВК-22»  - модели с реверсивной топкой, дымогарные трубки второго хода расположены по окружности симметрично к оси котла.
Модель котла КСВа «ВК-32» совмещает в себе как дымогарные, так и водотрубные нагревательные элементы. Так, топкой котла, является пространство, образованное газоплотными цельносварными водотрубными панелями и верхней обечайкой барабана с дымогарными трубами, рис.2.
Конвективной частью котла являются дымогарные трубки, расположенные в барабане-теплообменнике.

Схема2 

Рис. 2. Фотография топочного пространства котла ВК-32

Исследования

Многочисленные обследования жаротрубных котлов показали некоторые особенности их эксплуатации.

Гидравлический режим

Основной особенностью гидравлического режима ГЖК является низкое гидравлическое сопротивление котла (не более 0,5 кгс/см2). Это вызвано относительно малой величиной местных сопротивлений. Соответственно, это позволяет применять насосы меньшей мощности, что приводит снижению стоимости котельной и к экономии электроэнергии при эксплуатации.

Основная причина высокого процента выхода из строя ГЖК при работе на жесткой и загрязненной сетевой воде, по сравнению с водотрубными и чугунно-секционными котлами, заключается в низкой скорости воды в межтрубном пространстве (естественная циркуляция), и в наличии застойных зон.
У жаротрубного котла скорость воды очень мала, и он фактически работает как фильтр-осадитель шлама, частиц накипи и т.д. При включении в работу таких котлов по одноконтурной схеме со старой тепловой сетью, имеющей многолетнее накопление шлама в нижней части радиаторов и сетевых трубопроводах,  будет иметь место осаждение взвешенных веществ и покрытия ими нижних дымогарных труб ГЖК. Температура этих труб начинает превышать температуру  верхних, давление перегретых труб на трубную доску и напряжение в сварных швах резко возрастают. Снижение охлаждения дымовых газов вызывает локальный перегрев трубной доски. В результате больших напряжений в металле мостиков трубной доски между соседними отверстиями и, иногда, в сварных швах появляются микротрещины, которые в дальнейшем увеличиваются до сквозных. При условии значительного осаждения шлама или накипи и покрытия ими жаровой трубы, металл этих зон плохо охлаждается, образуются отдулины.
Примечателен тот факт, что если для водотрубного котла загрязнение внутренних поверхностей нагрева и рост сопротивлений при высоких скоростях можно обнаружить по показаниям манометров, для ГЖК при низких скоростях такое сопротивление незначительно, факт загрязнения не обнаруживается по показаниям манометров – его можно обнаружить только путем вскрытия и визуального осмотра.

Работа металла поверхностей нагрева

Особенностью ГЖК является высокая плотность теплового потока в жаровой трубе котла, которая примерно в 3-4 раза выше, чем у водотрубных котлов. Именно за счет этого и значительно снижены габариты и удельный вес современных жаротрубных водогрейных котлов. За счет таких высоких тепловых потоков, а также за счет наличия свободно­го движения воды в котле, на поверхности жаровых труб и поворотных камер может наблюдаться пристенное кипение. В некоторых котлах кипение воды наблюдается также на поверхности газотрубных пучков в местах их крепления на трубной доске первой поворотной камеры.

Однако по выше изложенным причинам при ухудшенной водоподготовке и одноконтурной схеме включения котлов, если в воде находятся соли жесткос­ти, при кипении воды на поверхности образуются плотные кальциевые отложения, которые существенно увеличивают термическое сопротивление стенки. Для котлов КСВа «ВК» один миллиметр накипи при высоких тепловых потоках в жаровой трубе увеличивает температуру стенки — на 100 -120 °С. При толщине накипи 3 мм и более температура металла достигает уже 500 и более °С, при этом углеродистая сталь теряет свою прочность, на жаровых трубах появляются вздутия, трубные решетки поворотной камеры коробятся, а трубы газотрубных пучков перегорают. Такие же проблемы возникают при эксплуатации импортных котлов.  На семинаре компании Viessmann представители фирмы демонстрируют типичные нарушения водоподготовки, при которых происходило ухудшение состояния металла поверхностей нагрева ГЖК – трещины в трубной доске, перегорание  труб газотрубных пучков и др., в финале – полное разрушение котла.

Так же жаротрубные котлы имеют много других особенностей, в частности отсутствие методики расчета таких котлов, поскольку все существующие на сегодняшний момент мтодик были созданы для расчет больших энергетических котлов и при применении их для малых котлов возникает очень большая погрешность.

Во многих случаях по той же причине отсутсвия методик расчета, установленная мощность горелки превышает тепловую мощность котла, что приводит к ухудшению условий работы: повышенной температуре уходящих газов, прогару задней стенки котла, перерасходу топлива, повышенной себестоимости тепла и частому ремонту котла.

Все это требует детального изучения режимов работы котла и горелочных устройств.