Каталог ссылок

Компанец Дмитрий Олегович
По теме: "Разработка и исследование техники аутентификации/идентификации сетевого пользователя на основе карактеристик асимметрии лица"

Порталы:

1. http://www.biometrics.ru – информационный портал, посвященный биометрическим технологиям и проблемам информационной безопасности, который призван объединить профессионалов в этой области.

2. http://library.graphicon.ru:8080/catalog/62 – Анализ изображений лица. Библиотека ссылок на англоязычные статьи с аннотациями.

3. http://daily.sec.ru – Портал по безопаности. Здесь собрана самая полная и актуальная информация по системам безопасности и средствам связи.

4. http://www.bezpeka.com/ – Украинский Центр информационной безопасности. Оказание услуг по вопросам обеспечения информационной безопасности, разработка и поставка программных средств защиты информации, оn-line библиотека, научно-исследовательская деятельность.

5. http://www.bromba.com/faq/biofaqe.htm – FAQ covering basic information, performance, implementation, and security.

6. http://www.biomet.org/ – brings together a diverse and comprehensive selection of biometric information. It provides an extensive web resource for biometric news, products, companies and analysis.

7. http://www.biometricscatalog.org/ – A US-government sponsored database of information about biometric technologies including research and evaluation reports, news articles, vendors and consultants, government documents and legislative text.

8. http://www.biometrics.org/ – The Biometric Consortium serves as a focal point for research, development, testing, evaluation, and application of biometric-based personal identification/verification technology.

9. http://biometrics.cse.msu.edu/ – An extensive web resource for biometric news, products, companies and analysis.

 

Сайты фирм и организаций:

1. http://www.biolink.ru/ – "Biolink" – системы биометрической идентификации. Сведения о компании и ее продуктах для проведения биометрической аутентификации личности. Описания решений. Каталог продуктов.

2. http://videoko.narod.ru/ – Интеллектуальная система видеонаблюдения и распознавания лиц «ВидеОко». 

3. http://www.iss.ru/ – Интеллектуальные Системы Безопасности : Intelligent Security Systems (ISS). Компания разрабатывает, производит и экспортирует интегрированные интеллектуальные системы безопасности. Цифровые системы видеонаблюдения. Компьютерные системы удаленного наблюдения…

4. http://www.goal.ru/ – Интеллектуальные системы охраны помещений и личности на базе персонального компьютера. Системы цифровой видео и аудио записи, контроля доступа на базе ПК, аппаратно-программные комплексы.

5. http://www.kodos.ru/ – Российский производитель полного спектра систем безопасности. Торговая марка "КОДОС"– комплексные системы безопасности, охранно–пожарные системы, системы контроля доступа, системы цифрового видеонаблюдения.

6. http://www.iai.donetsk.ua/prod/ind.php3?l=r&pr=45 – Описание программного продукта REC2002. Система REC2002 способна блокировать компьютер и открывать доступ только определенному пользователю при его появлении перед видеокамерой.

7. http://www.itv.ru/products/face/ – Автоматизированная система видеозахвата лиц и идентификации личности по изображению лица человека. Сканирует и запоминает лица всех людей, проходящих мимо видеокамеры. Определяет идентичность входных данных, представляющих собой изображения лица человека, осуществляет анализ, инвариантный синтез образа объекта, сравнение с базой данных и распознавание.

 

Персональные страницы:

1. The Face Detection Homepage by Dr. Robert Frischholz – This page is focused on the task of detecting faces in arbitrary images.

2. D. M. Gavrila – Publications Papers Articles Computer Vision Image Processing.

3. Daphna Weinshall – Computer and human vision, machine and perceptual learning .

 

Отдельные статьи по теме:

1. Appearance factorization for facial expression analysis – This paper addresses the issue of face representations for facial expression analysis and synthesis.

2. A New Kernel Direct Discriminant Analysis (KDDA) Algorithm for Face Recognition – In this paper new kernel direct discriminant analysis (KDDA) algorithm is proposedr. First, a recently advocated direct linear discriminant analysis (DLDA) algorithm is overviewed..

3. Three-Dimensional Face Recognition Using Surface Space Combinations –In this paper a range of three-dimensional face recognition systems, based on the fishersurface method developed in previous work, is tested.

4. A Bayesian Occlusion Model for Sequential Object Matching – Article on the problem of locating instances of a known object in a novel scene by matching the fiducial features of the object.

5. An Illumination Invariant Face Recognition System for Access Control using Video – Illumination and pose invariance are the most challenging aspects of face recognition. In this paper a fully automatic face recognition system that uses video information to achieve illumination and pose robustness is described.

6. Exploratory Sparse Models for Face Recognition – In this paper, a class of sparse regularization methods are considered for developing and exploring sparse classifiers for face recognition. The sparse classification method aims to both select the most important features and maximize the classification margin, in a manner similar to support vector machines.

7. Using Local Context To Improve Face Detection – Most face detection algorithms locate faces by classifying the content of a detection window iterating over all positions and scales of the input image. Recent developments have accelerated this process up to real-time performance at high levels of accuracy. However, even the best of today's computational systems are far from being able to compete with the detection capabilities of the human visual system.

8. Determining pose of a human face from a single monocular image – A new approach for estimating 3D head pose form a monocular image is proposed. It employs general prior knowledge of face structure and the corresponding geometrical constraints provided by the location of vanishing point to determine pose of human faces.

9. On-line Face Tracking Using a Feature Driven Level Set – An efficient and general framework for the incorporation of statistical prior information, based on a wide variety of detectable point features, into level set based object tracking is presented.

10. Automated Registration of 3D Faces using Dense Surface Models – Dense surface models can be used to register unseen surfaces, using an algorithm which is a hybrid of iterative closest-point (ICP) and active shape model (ASM) fitting.

11. Face Detection Based on Multiple Regression and Recognition Support Vector Machines – This paper presents a novel approach to face detection. A potential face pattern is first filtered by a Gaussian derivative filter bank to generate a set of derivative images, which are then transformed by the Angular Radial Transform (ART) to form a compact set of representation feature vectors.

12. A Multi-Stage Approach to Facial Feature Detection –A novel shape constraint technique which is incorporated into a multi-stage algorithm to automatically locate features on the human face is discribed.

13. Face Recognition Using Shape-from-shading – The sparse classification method aims to both select the most important features and maximize the classification margin, in a manner similar to support vector machines.

14. Pose-Independent Face Identification from Video Sequences – A scheme for pose-independent face recognition is presented. An "unwrapped'' texture map is constructed from a video sequence using a texture-from-motion approach, which is shown to be quite accurate. Simple lighting normalization methods improve robustness to directional and/or varying lighting conditions.

15. Recognition of Facial Expressions in the Presence of Occlusion – A new approach for the recognition of facial expressions from video sequences in the presence of occlusion.

16. Markov fields for recognition derived from facial texture error – When attempting to code faces for modelling or recognition, estimates of dimensions are typically obtained from an ensemble. These tend to be significantly sub-optimal. Each face contains both predictable and non–predictable qualities; only the predictable aspects are useful for defining coding systems for other faces.

17. A SOM Based Approach to Skin Detection with Application in Real Time Systems – A large body of human image processing techniques use skin detection as a first primitive for subsequent feature extraction. Well established methods of colour modelling, such as histograms and Gaussian mixture models have enabled the construction of suitably accurate skin detectors.

18. Face Verification via ECOC – A novel approach to face verification based on the Error Correcting Output Coding (ECOC) classifier design concept. In the training phase the client set if repeatedly divided into two ECOC specified sub-sets (super-classes) to train a set of binary classifiers. The output of the classifiers defines the ECOC feature space, in which it is easier to separate transformed patterns representing clients and imposters.

19. Recognising Trajectories of Facial Identities Using Kernel Discriminant Analysis – A comprehensive approach to address three challenging problems in face recognition: modelling faces across multi-views, extracting the non-linear discriminant features, and recognising faces dynamically in a spatio-temporal context. A multi-view dynamic face model is designed to extract the shape-and-pose-free facial texture patterns.

20. The Face Detection Homepage by Dr. Robert Frischholz – This page is focused on the task of detecting faces in arbitrary images.

21. Face Databases – In this chapter we review 27 publicly available databases for face recognition, face detection, and facial expression analysis.

22. Multiple Face Recognition from Omnidirectional Video – A very important task in meeting understanding is to know who is attending to the meeting and CAMEO's task is to infer people's identity from video. In this paper, we present an approach to identify people from an omnidirectional video sequence.

23. Face Recognition Across Pose and Illumination – As the use of face recognition systems expands towards less restricted environments, the development of algorithms for view and illumination invariant face recognition becomes important. However, the performance of current algorithms degrades significantly when tested across pose and illumination as documented in a number of evaluations.

24. Appearance-Based Face Recognition and Light-Fields – Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition the features are chosen to be the pixel intensity values in an image of the object.

25. Facial expression analysis – Handbook of face recognition,

26. Facial Asymmetry Quantification for Expression Invariant Human Identification – Investigation of facial asymmetry as a biometric under expression variation.

27. A Quantified Study of Facial Asymmetry in 3D Faces – With the rapid development of 3D imaging technology, the wide usage of 3D surface information for research and applications is becoming a convenient reality. This study is focused on a quantified analysis of facial asymmetry of more than 100 3D human faces (individuals).

28. Human Identification versus Expression Classification via Bagging on Facial Asymmetry – We demonstrate a dual usage of quantified facial asymmetry for (1) human identification under expression variations and (2) expression classification across different human subjects. Our experiments show the effectiveness of using statistical bagging and feature subspace selection BEFORE applying classiffers such as Linear Discriminant Analysis.

29. Illuminating the Face – This paper presents a novel method for solving the shape from shading problem in the restricted domain of human faces.

30. Facial Asymmetry: A New Biometric – In this work, we investigate in depth the effect of statistical facial asymmetry measurement as a biometric under expression variations.

31. Bimodal expression of emotion by face and voice – In a series of studies, we developed semi-automated methods of discriminating emotion and para-linguistic communication in face and voice.

Прочее:

Вилла "Куршавель" – Визитная карточка новой гостиницы в Симеизе. Собственный проект.