ДонНТУ | Магистры | Главная | Автореферат | Библиотека | Ссылки | Отчет о поиске | Индивидуальное задание |
Неоднократные заявления о возможном кризисе значительной части технической инфраструктуры в коммунальном хозяйстве, а также в промышленности, как об одном из основных факторов, похоже, стали воплощаться в жизнь. Россия столкнулась с резким ухудшением состояния инженерных систем зданий и сооружений жилого и офисного типов. На фоне этого происходит увеличение энергопотребления, внедрение современных технических систем, работающих в автоматических режимах (вентиляции, кондиционирования, пожаротушения, дымоудаления и т.д.), постоянно возрастает количество компьютерной и другой цифровой офисной и бытовой техники. Центр электромагнитной безопасности уже более 7 лет выполняет экспертные и технические работы в жилых и офисных зданиях г. Москвы. Собственные данные, анализ материалов, опубликованных в отечественной и зарубежной научно-технической литературе, а также предоставленных Международным обществом инженеров электротехники и электроники (IEEE), позволили выделить особенности состояния систем электроснабжения современных офисных зданий г. Москвы, прямо влияющие на техническую инфраструктуру здания, включая компьbrютерное и коммуникационное оборудование, систему трубопроводов здания, а также непосредственно на состояние здоровья людей.
При проектировании и монтаже новых систем
электроснабжения зданий, а также при реконструкции старых
внедряется трех- и пятипроводная схема подключения
электрооборудования, то есть фактически к фазным и нулевому
рабочему проводникам добавляется нулевой защитный проводник.
Практически любая неочевидная ошибка в подключении
электрооборудования в этих схемах (наиболее часто встречается
подключение нулевого рабочего проводника к клемме нулевого
защитного, и наоборот, либо подключение под один контактный
зажим обоих проводников) приводит к появлению
неконтролируемого растекания токов по металлоконструкциям и
трубопроводам систем водоснабжения и отопления зданий (рис.1,
2). Таким образом, ошибки монтажа электроустановок зданий
можно считать основной причиной возникновения токов утечки.
Помимо ошибок монтажа существует ряд других причин,
приводящих к возникновению токов утечки:
Рис.1. Правильное подключение нулевого рабочего и
нулевого защитного проводников
Рис.2.Неправильное подключение нулевого рабочего и
нулевого защитного проводников
Токи утечки влияют не только на инженерные системы здания и компьютерное оборудование, но и оказывают негативное воздействие на здоровье людей. Известно, что магнитное поле в окружающем пространстве создается проводниками с током. Таким образом, причина появления магнитных полей промышленной частоты (МП ПЧ) вблизи силовых трансформаторов, электродвигателей, распределительных устройств очевидна. Установлено, что источниками электромагнитного загрязнения в промышленных и жилых зданиях, кроме паразитного излучения электромагнитного поля различными приборами, является протекание постоянных и переменных токов по металлоконструкциям и трубопроводным системам зданий; источниками таких токов практически всегда являются системы электроснабжения этих же зданий. Кроме того, из электротехники хорошо известно, что суммарный ток по линиям питания однофазных и трехфазных нагрузок при отсутствии токов утечки тождественно равен нулю, и магнитное поле, создаваемое протекающими в таких (без утечек) кабельных линиях токами на удалении от них более 15-20 см, также пренебрежимо мало. При появлении в кабельной линии тока утечки именно этот ток создает в окружающем пространстве магнитное поле, медленно убывающее с увеличением расстояния от рассматриваемого кабеля. Диаграмма на рисунке 3 иллюстрирует результаты анализа специалистами ЦЭМБ характеристик источников МП ПЧ, сделанные на основе собственных данных за период 1997-2002 гг.
Рис.3. Распределение источников по типам от общего
числа обследованных помещений
"Предполагается, что медицинские последствия, такие как заболевания раком, изменения в поведении, потеря памяти, и многие другие состояния, включая рост числа самоубийств, являются результатом воздействия электромагнитных полей" (из обоснования Международной научной программы (1996 2005 гг.) Всемирной организации здравоохранения (ВОЗ) по биологическому действию ЭМП). По результатам исследований, выполненных нашими специалистами в помещениях офисного типа, оснащенных ПЭВМ, на рабочих местах персонала в 70 % случаев наблюдалось превышение нормативных уровней по электрическому полю в 1,5 10 раз, а по магнитному полю в 2 40 раз. Учитывая потенциальную опасность ЭМП для здоровья населения, в нашей стране разработаны и введены в действие Санитарные нормы, по ряду параметров являющиеся самыми жесткими в мире.
Если персональный компьютер находится в помещении, по стенам, за потолком или под полом которого проходят кабельные линии с токами утечки, вызывающие повышенный уровень магнитного поля, то изображение на видеомониторе может заметно искажаться ("плыть" или "дрожать"). Известны случаи, когда растр покрывается цветными пятнами различных оттенков, а иногда изображение полностью или частично пропадает на несколько секунд, и появляется вновь. Очевидно, что работать за таким монитором невозможно и вредно. Следует заметить, что в соответствии с требованиями СанПиН 2.2.2.542-96 "Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организации работы" предельно допустимое значение плотности магнитного потока, создаваемого компьютером, на рабочем месте пользователя не должно превышать 0,25 мкТл в диапазоне частот 5-2000 Гц, т.е. наличие "дрожания" изображения видеомонитора свидетельствует о как минимум 2-4-х кратном превышении данных требований.
Помимо "дрожания" изображения, магнитное поле, вызванное токами утечки по кабельным линиям, а также протеканием токов по металлоконструкциям и трубопроводам здания, при определенных условиях может индуцировать в проводниках информационных кабелей переменные токи промышленной частоты. Таким образом, даже при правильно выполненной системе заземления информационного оборудования, в пределах какого-либо, отдельно взятого участка локальной вычислительной сети, наличие вышеописанных проблем в других частях здания с большой долей вероятностью может привести к сбоям в работе информационных и компьютерных систем по всему зданию.
Протекание токов по системе заземления здания, а значит и по основной системе уравнивания потенциалов также приводит к ряду негативных последствий, как для компьютерных систем, так и для систем электроснабжения в целом. Поскольку в основную систему уравнивания потенциалов входят нулевые защитные (РЕ) проводники, металлические трубы всех инженерных коммуникаций, металлические части каркаса здания, заземляющее устройство молниезащиты, металлические оболочки телекоммуникационных кабелей, то протекание по ним переменных токов может вызывать сбои и "зависания" компьютерных сетей, появления токов помех по интерфейсным, информационным и сигнальным кабелям, а также невозможность нормальной работы другого офисного и электронного оборудования.
Наличие токов утечки по кабельным линиям не позволяет использовать современные средства обеспечения пожарной и электробезопасности - устройства защитного отключения, предписанные Государственными стандартами Российской Федерации, инструктивными письмами Главгосэнергонадзора РФ и Главного управления государственной противопожарной службы МЧС России. С 1 июля 2000 г. введено в действие новое (7 издание) раздела 6 и глав 7.1 и 7.2 раздела 7 "Правил устройства электроустановок (ПУЭ)". В частности, в нем указывается на необходимость установки устройств защитного отключения, обеспечивающих требуемый в настоящее время уровень обеспечения электро- и пожаробезопасности, и, как следствие этого, недопустимость наличия токов утечки в системах электроснабжения зданий.
Мы видим, что вопрос возникновения токов утечки затрагивает целый комплекс как инженерно-технических проблем, так и проблем, связанных со здоровьем людей. Именно поэтому необходимо профессионально подходить к их рассмотрению, сопоставляя все возможные варианты решения в техническом плане и с точки зрения экономической целесообразности.
Рассмотрим наглядный пример. Как правило, при выявлении источника повышенного уровня магнитного поля первой реакцией является желание "заэкранировать" источник. Однако на практике магнитное экранирование представляет достаточно сложную инженерно-техническую задачу, но принципиально решаемую. Для реализации этого способа необходимо выполнить длительный мониторинг величин плотности магнитного потока в помещениях. Затем по полученным данным рассчитать параметры магнитного экрана. К сожалению, в настоящее время в России материалы для экранирования магнитного поля не выпускаются. Для того, чтобы выполнить магнитное экранирование участка кабельной линии длиной 50 м с током утечки до 10 А и снизить величины плотности магнитного потока, необходимо изготовить экран площадью 550 кв. м. Только закупочная стоимость материала для экрана составит 203500,00 долларов США. Дополнительно надо учесть затраты на предпроектное обследование помещения и проектирование экрана, его доставку, таможенную очистку и монтаж, который займет порядка 1-2 месяцев при полной остановке работы в рассматриваемом помещении. Таким образом, экранирование магнитных полей, в условиях нашей страны, является экономически невыгодным мероприятием.
Для решения проблемы в вышеописанной ситуации наиболее рациональным методом является уменьшение создающего магнитное поле тока, т.е. устранение самой первопричины. Этот способ требует диагностики системы электроснабжения здания, а именно обследование систем защитного заземления и зануления и последующих работ по обнаружению и устранению токов утечки на металлоконструкции и трубопроводы.
В соответствии с отечественной и международной нормативной документацией, а также основываясь на большом практическом опыте работы по устранению токов утечки, можно предложить следующие технические мероприятия:
Термины и определения (ГОСТ Р 50571.1-93)
1. Ю.Г. Григорьев, В.С. Степанов, О.А. Григорьев, А.В. Меркулов //Электромагнитная безопасность человека. Российский Национальный комитет по защите от неионизирующего излучения, 1999 год.
2. О.А. Григорьев, В.С. Петухов, В.А. Соколов //Влияние неисправностей системы электроснабжения зданий на ускоренную коррозию трубопроводов. Новости теплоснабжения, 2002, № 7, стр.44-46.
3. О.А. Григорьев, В.С. Петухов, В.А. Соколов //Об ускоренной "точечной" коррозии внутренних трубопроводов зданий. Практика противокоррозионной защиты, 2002, № 3, стр. 15-19.
4. Правила устройства электроустановок. Издание 7. Раздел 6, Раздел 7, Главы 7.1, 7.2 М., Издательство НЦ ЭНАС 1999 год.
5. Правила устройства электроустановок. Издание 7. Раздел 1, Раздел 7, Главы 1.1, 1.2, 1.7, 1.9, 7.5, 7.6, 7.10 М., Издательство НЦ ЭНАС 2002 год.
6. Письмо Всероссийского НИИ коррозии № 87 от 06.11.2001 г.
7. Письмо Ассоциации разработчиков и производителей средств противокоррозионной защиты для топливно-энергетического комплекса (КАРТЭК) № 01/2007 от 04.12.2000 г.
8. Петухов В.С. и др. Коррозионные повреждения трубопроводов зданий, вызванные протеканием по ним токов. Практика противокоррозионной защиты, №4 (10), 1998 год.
9. Правила устройства электроустановок. Издание 6. М., ГЛАВГОСЭНЕРГОНАДЗОР РОССИИ, 1998 год.
ДонНТУ | Магистры | Главная | Автореферат | Библиотека | Ссылки | Отчет о поиске | Индивидуальное задание |