ТЕОРЕТИЧЕСКИЕ ОСНОВЫ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ

1 Основные элементы теории оптимизации

Источник

Термином «оптимизация» в литературе обозначают процесс или последовательность операций, позволяющих получить уточненное решение. Хотя конечной целью оптимизации является отыскание наилучшего или «оптимального» решения, обычно приходится довольствоваться улучшением известных решений, а не доведением их до совершенства. Поэтому под оптимизацией понимают скорее стремление к совершенству, которое, возможно, и не будет достигнуто.

Задача принятия решения состоит в выборе среди множества возможных решений (их называют также вариантами, планами и т. п.) такого решения, которое являлось бы в определенном смысле лучшим или, как говорят, оптимальным.

Удобно считать, что выбор решения производит некоторое лицо, принимающее решение (ЛПР), которое преследует вполне определенные цели. В зависимости от конкретной ситуации в роли лица, принимающего решение, может выступать как отдельный человек (инженер, научный сотрудник и т. п.), так и целый коллектив (группа специалистов, занятая решением одной задачи).

Каждое возможное решение характеризуется определенной степенью достижения цели. В соответствии с этим у лица, принимающего решение, имеется свое представление о достоинствах и недостатках решений, на основании которого одно решение, предпочитается другому. Оптимальное решение - это решение, которое с точки зрения лица, принимающего решение, предпочтительнее других возможных решений. Таким образом, понятие оптимального решения связано с предпочтениями лица, принимающего решение. Эти предпочтения на практике выражаются в различной форме, и их математическая формализация может составить сложную задачу, поскольку лицо, принимающее решение, как правило, не может ясно и четко сформулировать их.

Цель теории принятия решений и состоит в разработке методов, которые помогли бы лицу, принимающему решение, наиболее полно и точно выразить свои предпочтения в рамках соответствующей математической модели и в конечном счете обоснованно выбрать действительно оптимальное решение.

Прежде чем приступить к обсуждению вопросов оптимизации, введем ряд определений. Проектные параметры (искомые переменные). Этим термином обозначают независимые переменные параметры, которые полностью и однозначно определяют решаемую задачу проектирования. Проектные параметры - неизвестные величины, значения которых вычисляются в процессе оптимизации. В качестве проектных параметров могут служить любые основные или производные величины, служащие для количественного описания системы. Так, это могут быть неизвестные значения длины, массы, времени, температуры. Число проектных параметров характеризует степень сложности данной задачи проектирования. Обычно число проектных параметров обозначают через п, а сами проектные параметры через х с соответствующими индексами. Таким образом п проектных параметров данной задачи будем обозначать через .

Целевая функция (критерий качества). Это выражение, значение которого ЛПР (лицо, принимающее решение) стремится сделать максимальным или минимальным. Целевая функция позволяет количественно сравнить два альтернативных решения. С математической точки зрения целевая функция описывает некоторую (n+1)-мерную поверхность. Ее значение определяется проектными параметрами .

Примерами целевой функции, часто встречающимися в инженерной практике, являются стоимость, вес, прочность, габариты, КПД. Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости. Если проектных параметров два, то целевая функция будет изображаться поверхностью в пространстве трех измерений. При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются гиперповерхностями и не поддаются изображению обычными средствами. Топологические свойства поверхности целевой функции играют большую роль в процессе оптимизации, так как от них зависит выбор наиболее эффективного алгоритма.

Целевая функция в ряде случаев может принимать самые неожиданные формы. Например, ее не всегда удается выразить в замкнутой математической форме, в других случаях она может представлять собой кусочно-гладкую функцию. Для задания целевой функции иногда может потребоваться таблица технических данных (например таблица состояния водяного пара) или может понадобиться провести эксперимент. В ряде случаев проектные параметры принимают только целые значения. Примером может служить число зубьев в зубчатой передаче или число болтов во фланце. Иногда проектные параметры имеют только два значения - да или нет. Качественные параметры, такие как удовлетворение, которое испытывает приобретший изделие покупатель, надежность, эстетичность, тоже возможно учитывать в процессе оптимизации, хотя их сложно охарактеризовать количественно. Однако в каком бы виде не была представлена целевая функция, она должна быть однозначной функцией проектных параметров. В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несовместимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов и поставить в соответствие каждой целевой функции некоторый безразмерный множитель. В результате появляется «функция компромисса», позволяющая в процессе оптимизации пользоваться одной составной целевой функцией.

Поиск минимума и максимума. Одни алгоритмы оптимизации приспособлены для поиска максимума, другие - для поиска минимума. Однако независимо от типа решаемой задачи на экстремум можно пользоваться одним и тем же алгоритмом, так как задачу минимизации можно легко превратить в задачу на поиск максимума, поменяв знак целевой функции на обратный. Множество допустимых решений (МДР) - пространство решения. Так называется область, определяемая всеми п проектными параметрами. Пространство решения не столь велико, как может показаться, поскольку оно обычно ограничено рядом условий, связанных с физической сущностью задачи. Ограничения могут быть столь сильными, что задача не будет иметь ни одного удовлетворительного решения. Следует отметить, что очень часто в связи с ограничениями оптимальное значение целевой функции достигается на одной из границ области множества допустимых решений задачи.

Локальный оптимум. Так называется точка пространства решений, в которой целевая функция имеет наибольшее значение по сравнению с ее значениями во всех других точках ее ближайшей окрестности.

Часто пространство проектирования содержит много локальных оптимумов и следует соблюдать осторожность, чтобы не принять первый из них за оптимальное решение задачи. Глобальный оптимум. Глобальный оптимум - это оптимальное решение для всего множества допустимых решений. Оно лучше всех других решений, соответствующих локальным оптимумам, и именно его ищет ЛПР. Возможен случай нескольких равных глобальных оптимумов, расположенных в разных частях пространства проектирования.

2 Математические модели принятия решения, используемые в задачах оптимального проектирования

Рассмотрим классификацию оптимизационных задач по виду математических моделей, которые включают следующие элементы :

Исходными данными для математической модели являются: целевая функция , левые части ограничений и их правые части .Исходные данные могут быть детерминированными и случайными. Детерминированными называются такие исходные данные, когда при составлении модели их точные значения известны. В достаточно распространенных задачах распределения ресурсов точное значение имеющегося ресурса, а также других элементов, входящих в модель, может быть заранее неизвестно. В таких случаях эти элементы модели являются случайными величинами.

Искомые переменные могут быть непрерывными и дискретными. Непрерывными называются такие величины, которые в заданных граничных условиях могут принимать любые значения. Дискретными называются такие переменные, которые могут принимать только заданные значения. Целочисленными называются такие дискретные переменные, которые могут принимать только целые значения.

Зависимости между переменными (как целевые функции, так и ограничения) могут быть линейными и нелинейными. Напомним, что линейными называются такие зависимости, в которые переменные входят в первой степени, и с ними выполняются только действия сложения или вычитания. Если же переменные входят не в первой степени или с ними выполняются другие действия, то зависимости являются нелинейными. При этом следует иметь в виду, что если в задаче хотя бы одна зависимость нелинейная, то и вся задача является нелинейной.

Сочетание различных элементов модели образует различные классы задач оптимизации, которые требуют разных методов решения. Основные классы задач оптимизации приведены на рис. 1.

Рис. 1.1. Основные классы задач оптимизации