Магистр ДонНТУ Андрианова Ольга Сергеевна

Андрианова Ольга Сергеевна

Факультет: вычислительной техники и информатики
Кафедра: компьютерных систем мониторинга
Специальность: компьютерный эколого-экономический мониторинг
Тема магистерской диссертации:
  "Скрытая передача больших массивов информации путем стегокодирования WAV-файлов"
Научный руководитель:    Губенко Наталья Евгеньевна, доцент, к.т.н.

Тезисы к докладу на конференции "Компьютерный мониторинг и информационые технологии 2008" на тему "Применение нейронных сетей в медицине"


Использование нейросетей в медицине, как правило, связано с системами для диагностики и дифференциальной диагностики заболеваний. Однако обученная нейросеть не только умеет распознавать примеры, но и хранит достаточно важную информацию. Поэтому одним из серьезных направлений применения нейронных сетей является интерпретация медицинских данных. Поиск глубинных закономерностей между получаемыми данными и патологическими процессами начинает отставать от разработки все новых и новых методов, поэтому применение для этой цели нейросетей может оказаться чрезвычайно выгодным.

Нейронные сети представляют собой нелинейные системы, позволяющие гораздо лучше классифицировать данные, чем обычно используемые линейные методы. В приложении к медицинской диагностике они дают возможность значительно повысить специфичность метода, не снижая его чувствительности.

Отличительное свойство нейросетей состоит в том, что они не программируются - не используют никаких правил вывода для постановки диагноза, а обучаются делать это на примерах. В этом смысле нейросети совсем не похожи на экспертные системы, разработка которых в 70-е годы происходила после временной "победы" Искусственного Интеллекта над тем подходом к моделированию памяти, распознавания образов и обобщения, который основывался на изучении нейронной организации мозга.

Одной из наиболее известных из разработанных экспертных систем, действие которых основывалось на знаниях, извлеченных у экспертов, и на реализации процедур вывода, была система MYCIN. Данную систему разработали в Стэнфорде в начале 70-х годов для диагностики септического шока. Половина больных умирала от него в течение суток, а врачи могли обнаруживать сепсис лишь в 50% случаев. MYCIN, казалось, была подлинным триумфом технологии экспертных систем - ведь она позволяла обнаружить сепсис в 100% случаев.

Примером программы диагностики служит пакет кардиодиагностики, разработанный фирмой RES Informatica совместно с Центром кардиологических исследований в Милане. Программа позволяет осуществлять неинвазивную кардиодиагностику на основе распознавания спектров тахограмм. Тахограмма представляет собой гистограмму интервалов между последовательными сердцебиениями, и ее спектр отражает баланс активностей симпатической и парасимпатической нервной системы человека, специфично изменяющейся при различных заболеваниях.

Так или иначе, уже сейчас можно констатировать, что нейронные сети превращаются в инструмент кардиодиагностики - в Англии, например, они используются в четырех госпиталях для предупреждения инфаркта миокарда.

Одно из главных направлений, в котором сейчас идут работы по использованию нейронных сетей, - диагностика рака молочной железы. Этот недуг - причина смерти каждой девятой женщины. Обнаружение опухоли осуществляется в ходе первичного рентгенографического анализа молочной железы (маммографии) и последующего анализа кусочка ткани новообразования (биопсии). Несмотря на существование общих правил дифференцирования доброкачественных и злокачественных новообразований, по данным маммографии, только от 10 до 20% результатов последующей хирургической биопсии действительно подтверждают наличие рака молочной железы. Опять мы имеем дело со случаем крайне низкой специфичности метода.

Исследователи из университета Дьюка обучили нейронную сеть распознавать маммограммы злокачественной ткани на основе восьми особенностей, с которыми обычно имеют дело радиологи. Оказалось, что сеть способна решать поставленную задачу с чувствительностью около 100% и специфичностью 59% (сравните с 10-20% у радиологов). Сколько женщин с доброкачественными опухолями можно не подвергать стрессу, связанному с проведением биопсии, если использовать эту нейронную сеть!

Нейросети можно использовать и для прогноза действия различных разрабатываемых средств лечения. Они уже успешно применяются в химии для прогноза свойств соединений на основе их молекулярной структуры. Исследователи из Национального института рака в США использовали нейросети для предсказания механизма действия препаратов, применяемых при химиотерапии злокачественных опухолей. Заметим, что существуют миллионы различных молекул, которые необходимо исследовать на предмет их антираковой активности. Для решения аналогичной задачи использовались и сети Кохонена. Эти обучаемые без учителя самоорганизующиеся нейросети разбивали вещества на заранее неизвестное число кластеров и поэтому дали исследователям возможность идентифицировать вещества, обладающие новыми цитотоксическими механизмами воздействия.

Диагностика и лечение онкологических заболеваний, а также разработка новых медикаментозных средств несомненно представляют собой важнейшую область применения нейросетевых технологий. Однако в последнее время среди исследователей и врачей растет осознание того факта, что будущие успехи должны быть тесно связаны с изучением молекулярных и генетических причин развития заболеваний.

Не случайно в апреле 1997 года эксперты Национального института здоровья (США) выступили с рекомендациями по усилению исследований, связанных с выявлением причин, вызывающих рак, и разработок, направленных на предупреждение болезней. Нейросети уже довольно давно активно применяются в анализе геномных последовательностей ДНК, в частности для распознавания промоторов - участков, предшествующих генам и связываемых с белком РНК-полимераза, который инициирует транскрипцию. Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков.

Прогностические нейросетевые модели могут использоваться в демографии и организации здравоохранения. Создана экспертная система, предсказывающая, умрет ли человек (в возрасте 55 лет и старше) в ближайшие 10 лет. Прогноз делается по результатам ответов на 18 вопросов анкеты. В анкету включены такие вопросы, как раса, пол, возраст, вредные привычки, семейное положение, семейный доход. 4 из 18 вопросов выявляют индекс массы тела (body mass index) в различные периоды жизни респондента. Индекс рассчитывается как отношение веса к квадрату роста (индекс более 27 кг/м считается тучностью). Повышенное внимание к этому показателю говорит о его значимости для прогноза жизни.


Литература

  1. Нейроинформатика / А.Н.Горбань, В.Л.Дунин-Барковский, А.Н.Кирдин и др. - Новосибирск: Наука. Сибирское предприятие РАН, 1998. - 296с.
  2. С.Короткий Нейронные сети: основные положения
  3. Е. Монахова, "Нейрохирурги" с Ордынки, PC Week/RE, №9, 1995