Content
Introduction
At mathematical modeling of physical processes there is a need for
finding the high-precision solution of differential equations and their systems.
Most often it isn't possible to find the analytical solution, therefore numerical
methods of solving this task are applied.
To obtain solution of given accuracy order using numerical methods, it can be
demanded to execute considerable number of iterations. Despite achievements of
technical progress in the field of high-performance computing systems development,
there is a set of tasks in which the problem of computing resources shortage is
felt sharply. For example space programs, the medical researches, real time
monitoring systems.
At present (May, 2013) according to top-500 rating
[1],
the most powerful supercomputer of the world is Titan - Cray XK7
[2],
which contains 560640 kernels (including GPU kernels).
Its peak productivity is 20 PetaFLOPS. It'll be used for the the
most difficult computing problems solving, like calculation of
Earth climate change consequences.
1. Researches goal and tasks
Researches goal is multidimensional Cauchy problems solving
efficiency increasing using parallel high-precision numerical
methods.
For purpose achievement in a master's thesis the following main
researches problems are solving:
- Existing Richardson extrapolation based methods
for the task solving studying.
- Efficiency analysis of various extrapolation schemes usage.
- Efficiency analysis of various basic methods usage.
- Researching of methods realization features using
computing systems with various topologies.
- Existing algorithms and methods improvement for solving
efficiency increasing.
- Program realization for the system allows to estimate
efficiency of received algorithms experimentally.
- Test examples development to research methods efficiency.
- Experiment results analysis.
2. Researches and developments overview
Theme of Cauchy problem solving optimization is well considered
by scientists of America, Canada, Germany and other developed
countries.
Ukrainian scientists also working with this problem.
Donetsk National Technical University employees developing new
methods for high-precision numerical differential equations
solving. Also they working around existing methods improvement.
Their publications [13-15] are in top-list of search engines
results for Russian-speaking queries.
3. Richardson extrapolation
Richardson extrapolation methods are intended for obtaining the
high-precision solution of Cauchy problem and integration of the
systems of the ordinary differential equations (SODE) with
difficult right parts. Practical usage of extrapolation methods is
complicated because of large computing complexity of their
consecutive realization. Besides, usage of local extrapolation
methods based on explicit basic schemes limited to area of
nonrigid tasks. Therefore creation of effective parallel block
implicit methods of Richardson extrapolation is one of the most
real ways to reduce time of integration of multidimensional
rigid initial tasks.
Figure 1 - Richardson extrapolation
Effective from the computing expenses minimization point of view the
consecutive method with Richardson extrapolation usage is described
in [
16-17]. Potentially there are three sources of internal concurrence:
- system concurrence (it is limited to dimension SODA);
- extrapolation concurrence (it is limited to the
extrapolation table size);
- basic method concurrence (small degree of concurrence).
Extrapolation table first column values are:
Each of solution approximations turns out at the expense of Ni times
using of single-step block k0-point method with different steps of
integration:
Conclusion
Increasing of efficiency of the numerical high-precision solving
of Cauchy problem for equations systems is an actual scientific
task. The analysis of the main existing practices in the field
is at present made. Both materials of the international sources,
and the results received by the Ukrainian scientists were
considered.
The perspective direction of further researches
is using of local extrapolation
for parallel methods for solving rigid problems development.
This master's work isn't completed yet. Final end: December, 2013.
The full text of work and materials on a subject can be received
at the author or his head after the specified date.
References
- TOP500 Supercomputer Sites [Электронный ресурс].
Режим доступа: http://www.top500.org
- The World's #1 Open Science Supercomputer [Электронный ресурс].
Режим доступа: http://www.olcf.ornl.gov/titan/
- Фельдман Л.П. Параллельные коллокационные методы решения
задачи Коши для обыкновенных дифференциальных уравнений
[Электронный ресурс]. Режим доступа: http://masters.donntu.ru/2008/fvti/zavalkin/library/feldman1/default.htm
- Автореферат Иванов АВ Экстраполяционные одношаговые
параллельные методы решения систем обычных дифференциальных уравнений
[Электронный ресурс]. Режим доступа:
http://masters.donntu.ru/2010/fknt/ivanov/diss/index.htm
- Л. П. Фельдман, И. А. Назарова, "Параллельные алгоритмы численного
решения задачи Коши для систем обыкновенных дифференциальных уравнений",
Матем. моделирование, 18:9 (2006), 17–31
- Designing Parallel Algorithms for Solving Higher Order Ordinary
Differential Equations Directly on a Shared Memor y P arallel Computer
Architecture [Электронный ресурс].
Режим доступа:
http://it.science.cmu.ac.th/ejournal/dl.php?journal_id=328
- Video Lectures MIT OpenCourseWare, Arthur Mattuck
[Электронный ресурс]. Режим доступа:
http://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/
- A Block Predictor-Corrector Method For The Direct Solution of General
Fifth Order Ordinary Differential Equations, Olabode B.T.,
Canadian Journal on Computing in Mathematics, Natural Sciences,
Engineering and Medicine Vol. 4 No. 1, February 2013
- Richardson extrapolation, From Wikipedia, the free encyclopedia
[Электронный ресурс]. Режим доступа:
http://en.wikipedia.org/wiki/Richardson_extrapolation
- Control of step size and order in extrapolation codes,
L.F. Shampine, Journal of Computational and Applied Mathematics,
Volume 18, Issue 1, April 1987, стр. 3–16
- Рациональная интерполяция, Материал из Википедии — свободной энциклопедии
[Электронный ресурс]. Режим доступа:
http://ru.wikipedia.org/wiki/Рациональная_интерполяция
- Introduction to Numerical Analysis, J. Stoer, R. Bulirsch - 2nd edition
- Фельдман Л.П., Назарова И.А. Применение технологии локальной экстраполяции
для высокоточного решения задачи Коши на SIMD-структурах //
Научные труды Донецкого национального технического университета.
Выпуск 70. Серия: «Информатика, кибернетика и вычислительная техника»
(ИКВТ-2003) – Донецк: ДонНТУ, 2003.
- Чисельні методи в інформатиці : підручник для вузів / Лев Петрович Фельдман,
Анатолій Іванович Петренко, Ольга Анатоліївна Дмитрієва ;
За заг. ред. М.З. Згуровський . – Київ : BHV, 2006 . – 479 с.
- Михайлова Т.В. Оценка эффективности высокопроизводительных вычислительных
систем с использованием аналитических методов//
Материалы 2-й международной научно-технической конференции
"Моделирование и компьютерная графика", г. Донецк, 10-12 октября 2007 г.
- Хайрер Э., Нёрсетт С., Ваннер Г. Решение обыкновенных дифференциальных
уравнений. Нежесткие задачи: Пер. с англ. – М.: Мир, 1990. – 512с.
- Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений.
Жесткие и дифференциально-алгебраические задачи. – М.: Мир,1999. – 685с.