Українська   Русский
DonNTU   Masters' portal

Abstract

Introduction

One of the most critical ecological problems in the Donetsk region is the problem of waste management. Accumulated in large quantities industrial waste (4 billion tons) negatively affect the environment. The area of land allotted for the waste is close to 2% of territory of the region [1].

Due to the lack of plants for processing wastes, used as a secondary raw material, and disposal of toxic waste, dangerous waste is stored under the open air in special landfills that do not always meet environmental requirements. The intensive formation and storage of dangerous waste has a negative impact on the environment, promotes activation of exogenous geological processes, changes in physical and mechanical properties and composition of the of soils [1].

1. Relevance of goals and tasks of the research results

The impact of filtrate on the surface and on the groundwater is the basic factor in the negative impact of the landfill.

Objective: to search a method that provides the maximum efficiency of purification taking into account various concomitant factors, namely a stage of the life cycle of the landfill, climatic factors, landfill capacity, performance requirements of the purified leachate.

2. Polygons of Donetsk

The landfills (or rather dumps — in their present form) municipal solid waste (MSW) significantly impair the environment. The landfill is a special construction, appointed for the centralized storage (isolation) MSW. A terms of its functioning designed to ensure reliability in the protection of the environment and sanitary-epidemiological safety of the population [2].

The operation of landfills is conducted without modern ecological requirements, such as the presence of the drainage system to drain leachate and isolating screen. Besides, existing landfills or long since worn out normative term and MSW dumped on them because of the absence of any alternatives or resource landfills practically exhausted [3].

In the tablе 2.1 are the content of inorganic and organic connections in underground waters in the vicinity of landfills Donetsk.

Table 2.1 — The сontent of inorganic and organic compounds in groundwater in the vicinity of landfills Donetsk, mg/dm3 [4]

Components (substances and ions) NH4 Phenols Petroleum products
MPC 2,0 0,1 0,3
Larinsky 1,8 0,01 0,1
Chulkovsky 1,9 0,01 0,1
Petrovsky 2,6 0,01 0,15

 

The Law of Ukraine On Waste regulating the powers of the local administrationobliges in the article 20 To organize the collection and removal of household and other, create to landfills wastes their disposal facility, to carry out separate collection of valuable components ... [5]. If we analyze amount of MSW per year exported from cities in million m3, the leader here is Donetsk (4.9), Dnipropetrovsk (3.56) area, and the city of Kyiv (4.3). All in all rate of per year of waste exported in Ukraine constitutes to 49,79 million m3 with a population of 46.9 million [3].

3. Filtrate landfills

Effective technologies of clearing and recycling of leachate is not there yet. Main sources of leachate in the landfill body is [3]:

a) initial moisture content of the individual components;

b) atmospheric moisture;

c) the moisture that forms as a result of biochemical processes in the body of the landfills.

Leachation water differ uneven accumulation for a year due to seasonality of precipitation. In practice, to distinguish between the so called young and old leachate. Young is formed in the early stages of decomposition of the waste and continues till 5–10 years, characterized by middle pH and high value of biological oxygen swallowing, sometimes 40000mg2/dm3. Old f leachate is formed mainly on the stage vital functions after the operation of the landfill and is characterized by the СOD of about 200–400 mg2/dm3 [5, 7]. It is therefore advisable to avoid the latter factor and the proliferation of of pathogenic microorganisms through a variety of fauna on the points of garbage collection use closed plastic containers colored with inscriptions for each of them should be glass, paper, etc. [5, 7].

4. Purification of landfill leachate

The chemical composition of leachate depends mainly on the morphological composition МSW and residence time in the body of the landfill. Analysis of the filtrate indicates a wide variety of chemical elements and their concentrations [5]. In the study of the chemical composition of leachates waste landfills determined only conventional stipulated regulations, wastewater components [8].

Use of sorption cleaning is effective in clearing low сoncentration leachation water, besides many components composition of drainage waters, there is the difficulty of sorbent selection for their selective ability, a membrane treatment technology can be used as purification at any stage vital functions the landfill [9].

There are many methods, including sorption method is effective. As sorbents commonly used activated carbon, but the cost of cleaning is very high. The last years more and more carbon is not subject to natural sorbents, including important place glauconite. The effectiveness of the practical use of glauconite as a sorption material depends on its pore structure, specific surface area, shape and size of grains, and other structural and geometric characteristics, the collection of which is called texture sorbent [10].

However, the natural dispersion sorbents have valuable properties, among them — developed specific surface area, high adsorption and yonoobminni properties and makes them widely used in industry and agriculture [6]. Studies have shown that all types of sorbents adsorption takes place as the mechanism of physical adsorption molecules and the mechanism of ion exchange [15, 17].

As solvents sorbed on natural sorbents dispersed mainly by physical adsorption mechanism, it is advisable to use natural sorbents with large dispersion adsorption space, able to absorb large molecules solvents [15]. Recently, much attention of researchers attracted adsorption methods of cleaning gas and liquid media of pollutants, including the use of natural sorbents dispersed — zeolites, bentonite, palyhorskytiv, glauconite [16].

Application of glauconite allows you to remove from contaminated water, radioactive isotopes (65–98%), heavy metals Cu2+, Ni2+, Fe3+, Pb3+, Sb3+ (94,8–100%), Cr3+, As3+ (33,6–33,8%) effectively clean industrial waste also from suspended solids, surfactants, herbicides, pesticides, phenols more. Another feature is its use of glauconite prolonged action and low percentage of maximum desorption (2–8%), that eliminates the need for recycling cleaning products [18].

5. Physico-chemical basis of the adsorption process

Thermodynamic system consisting of two or more phases, called heterogeneous. In heterogeneous system phases separated by an interface. Since the energy of the molecules on the surface is different from the energy of the molecules in the depth phase.It is connected to the fact that connection of molecules in the surface layer is unsaturated. The nature of the molecules on the surface will be different than in the middle of solids. Consequently, the concentration of dissolved substances on the surface of different phases of the concentration of dissolved substances in the depth phase. This phenomenon is called surface condensation component [19]. Surface condensation component per unit surface area of ​​the phase is called adsorption:

 

nповik = Гik

 

nповik — surface condensation i-th component of the k-th surface;

Гik — adsorption i-th component of the k-th surface.

Solid body, the surface of which adsorption occurs, ie, the concentration of gas or vapor is called the adsorbent and the substance is absorbed from the bulk phase — adsorbate [19, 20].

Langmuir equation is written as [21]:

 

X = XmbC/(1 + bC),

 

Xm — limit value of adsorption;

b — coefficient that is meaningful equilibrium constant.

6. Activation mineral sorbents

Processing of natural sorbents mineral acids — one of the most important ways to get high-quality activated adsorbents used in different sectors of the economy [22]. According to the existing concepts, while dekationuvanni clay minerals, which begins with obtaining the hydrogen form, is a break of Si–O–Al in adjacent tetrahedra, resulting in the formation of OH groups associated with silicon atoms and aluminum atoms trykoordynovani, and brenstedovsky center. Scheme of acid activation glauconite is shown in figure 6.1.

Scheme of acid activation glauconite

Figure 6.1 — Scheme of acid activation glauconite

On the surface silanol groups are ultramikrochastits as part of cationic and protonated forms. Thus, the mechanism of acid activation is shown in figure 6.2.

The mechanism of acid activation

Figure 6.2 — The mechanism of acid activation

When activated siliceous compounds with alkali silanol groups are involved, being in the form of hydrogen and hydrogen proton takes place ion Na+. Mechanism activation an alkali is shown in figure 6.3.

Mechanism of activation an alkali

Figure 6.3 — The mechanism of activation an alkali

7. The experimental procedure

Chemical activation of glauconite in the mode of boiling conducted by the following procedure:

  1. а prototype was purified from foreign inclusions (mechanical impurities), crushed to a homogeneous fraction composition;
  2. were added hydrochloric acid or solution of sodium hydroxide in a volume ratio of 1:10 (solid : solution), stirred thoroughly;
  3. activation was performed for 30 min. and 1 hour for part of the samples was carried out rinsed of with distilled water in a volume ratio of 1:5 (suspension : distillate).

Chemical activation impregnation method is carried аccording to[23].

Activated sorbents dried under normal conditions.

7.1 Sorption capacity of activated glauconite relative ammonium ion

Determination of content ammonium ions in water was performed colorimetric method [24], based on the reaction between NH4+ ions with an alkaline solution of potassium iodomerkuriata K2[HgI2], the so-called Nesler reagent. As a result of this interaction is formed iodistyy merkuramoniy. Reaction scheme is shown in figure 7.1.


The reaction scheme

Figure 7.1 — The reaction scheme


Table 7.1 — Effect of chemical activation parameters on the sorption capacity of glauconite deposits Amvrosiivska

Number of the sample Sorbent Information about activation method The initial concentration NH4+ , mg/dm3 Residual concentration NH4+, mg/dm3

Extent clearing, %

Sample №1 Glauconite 0,1 0,0152 84,84
Sample №2 Glauconite 0,1 N NaOH treatment / activation time 30 min. / rinsed 0,1 0,0130 87,02
Sample №3 Glauconite 0,1 N NaOH treatment / activation time 30 min. / not rinsed 0,1 0,0150 85,02
Sample №4 Glauconite 0,1 N NaOH treatment/ activation time 60 min. / rinsed 0,1 0,0130 87,05
Sample №5 Glauconite 0,1 N NaOH treatment / activation time 60 min. / not rinsed 0,1 0,0111 88,88
Sample №6 Glauconite 0,1Н NaOH boiling / activation time 60 min. / rinsed 0,1 0,0082 91,84
Sample №7 Glauconite 0,1Н NaOH boiling / activation time 60 min. / not rinsed 0,1 0,0046

95,44

Sample №8 Glauconite HCl(с) treatment / activation time 60 min. / rinsed 0,1 0,0020 98,02
Sample №9 Glauconite HCl(с) boiling / activation time 60 min./ rinsed 0,1 0,0019 98,11
Sample №10 Glauconite HCl(с) boiling / activation time 30 min. / not rinsed 0,1 0,0020 98,02

Histogram of the degree of purification of ammonium ions

1 — natural glauconite, 2 — activated glauconite 0.1 N NaOH (treatment — 30 min., rinsed), 3 — activated glauconite 0,1 N NaOH (treatment — 30 min., not rinsed), 4 — activated glauconite 0.1 N NaOH (treatment — 60 min., rinsed), 5 — activated glauconite 0,1 N NaOH (treatment — 60 min., not rinsed), 6 — glauconite activated 0.1 N NaOH (boiling point — 60 min., rinsed), 7 — glauconite activated 0,1 N NaOH (boiling point — 60 min., not rinsed), 8 — glauconite activated HCl(с) (treatment — 60 min., rinsed), 9 — glauconite activated HCl(с) (boiling point — 60 min., rinsed), 10 — glauconite activated HCl(с) (boiling point — 30 min., not rinsed)

Figure 7.2 — Histogram of the degree of purification of ammonium ions


It should be noted that all the chemically modified samples showed an increase in the adsorption capacity for ammonium ions relative to the same activated glauconite deposits.

The results of a sorbent modification of natural glauconite indicate that modification of glauconite two most common methods — alkaline and acid activated glauconite at different ways of spending leads to a change in adsorption capacity with respect to ammonium ions , the analysis showed that the best adsorption properties with respect to ammonium ions has chemically modified sample which is activated by means of concentrated hydrochloric acid was subjected to boiling eventually activate 60 min and rinsed (sample number 9 relatively activated glauconite degree of purification increased by 13,3%. Among the samples were subjected to alkaline activation best sorption capacity showed a pattern which is activated using 0.1 N NaOH, which was subjected to boiling time of 60 min. activation and not rinsed. The degree of purification when compared with activated glauconite increased by 10.6%.

Table 7.2 — Experimental determination of sorption info NH4+ sample № 8

Glauconite sample weight, g 0,5 0,5 0,5 0,5 0,5 0,5
The contact time of the adsorbent with a solution, min 10 10 10 10 10 10
The initial concentration NH4+ С1, mg/dm3 1 2 5 10 20 30
The residual concentration NH4+ С2, mg/dm3 0,2959 0,6939 0,9847 1,5969 2,3010 2,8214
The adsorption capacity of the sorbent Г, mg/ g 0,14 0,26 0,80 1,68 3,54 5,43
Lg Г – 0,53 – 0,16 – 0,01 0,20 0,36 0,45
Lg Сзал – 0,85 – 0,58 – 0,01 0,23 0,55 0,74

It can be assumed that even if the exposure of the mineral occurs at low pH the output a certain amount of cations of the aluminosilicate layer sorbirovannnye cations NH4+ are able to replace them with more robust communication established between the layers.

The adsorption isotherm of ammonium ions in natural coordinates and in logarithm coordinates 12 frames, 7 cycles duration of 6 seconds, 207 Kb

Figure 7.3 — The adsorption isotherm of ammonium ions in natural coordinates and in logarithm coordinates


Stroke on the initial part of the isotherm corresponds to the Langmuir isotherm, but the saturation of the sample does not occur and the sorption isotherm takes linear. Sorption values significantly outperformed saturation for metal cations and form, in this case, the maximum — 5 mg/g The literature notes Election ability phyllosilicates cations of large size, which can be explained by sieve effect .

Table 7.3 — Experimental determination of sorption info NH4+ sample № 8, № 3, № 10

Number of the sample Sample weight, g The contact time of the adsorbent and the solution, min The initial concentration NH4+, mg/dm3 The residual concentration NH4+ , mg/dm3 The degree of purification, %
Sample №8 0,5 30 100 6,21 93,7
Sample №9

0,5 30 100 5,09 94,9
Sample №10 0,5 30 100 5,57 94,4

 

The obtained results show that the sorption of ammonium occurs not only on the surface of glauconite, but also in its pore spaces where there are less accessible exchange centers, causing increased degree of cleaning solutions from NH4+. Freundlich equation is: Г = 0,74·С0,53. The resulting adsorption isotherm indicates the presence of macropores and micropores and strong intermolecular interaction. The resulting coefficient α = 0,74 indicates high sorption properties.

Аs a result of experimental investigation was first conducted chemical sorbent activation Amvrosiivska deposits glauconite. The high degree of purification of the ammonium ions activated sorbent glauconite. All specified determines the feasibility of chemical modification of natural sorbent Amvrosiivska deposits glauconite for wastewater treatment.

7.2 Sorption capacity of activated glauconite relative to phenol

For bromination of phenol used bromide-bromat solution [25].


5КВr + КВrО3 + 3Н2SO4 = ЗВr2 +2К2SO4 + ЗН2O.


Excess bromine, that did not go for bromination was determined by iodometric. To this end, the solution that investigated, was added 1 g of potassium iodide, closed plugs and leaving for 5 minutes. Bromine displacing iodine from potassium iodide, which titrate 0.1 N sodium thiosulfate in the presence of starch.

Contact time with the adsorbent solution model — 20 minutes, the mass of sorbent sample — 1 g.

Table 7.4 — Experimental results from activation

Number of the sample Sorbent Information about activation method The initial concentration, mmol/dm3 Residual concentration, mmol/dm3 Extent clearing, %
Sample 1 Glauconite 1,06 0,80 24,53
Sample 2 Glauconite 0,1 N NaOH treatment / activation time 30 min. / rinsed 1,06 0,78 26,10
Sample 3 Glauconite 0,1 N NaOH treatment / activation time 30 min. / not rinsed 1,06 0,78 26,10
Sample 4 Glauconite 0,1 N NaOH treatment / activation time 60 min. / rinsed 1,06 0,77 27,67
Sample 5 Glauconite 0,1 N NaOH treatment / activation time 60 min. / not rinsed 1,06 0,78 26,10
Sample 6 Glauconite 0,1Н NaOH boiling / activation time 60 min. / rinsed 1,06 0,75 29,25
Sample 7 Glauconite 0,1Н NaOH boiling / activation time 60 min. / not rinsed 1,06 0,77 27,67
Sample 8 Glauconite HCl(с) treatment / activation time 60 min. / rinsed 1,06 0,82 22,96
Sample 9 Glauconite HCl(с) boiling / activation time 60 min. / rinsed 1,06 0,83 21,38
Sample 10 Glauconite HCl(с) boiling/ activation time 30 min. / not rinsed 1,06 0,82 22,96

 

An attempt to increase the capacity of glauconite sorption by chemical activation showed the best result for sample 4 — activation of 0.1 N NaOH, boiling for 60 min. rinsed, which has significantly (by 4.72%) to reduce the residual concentration of phenol in water, but chemical activation with hydrochloric acid rather seriously affected the sorption capacity of the mineral — sorption of phenol, in relation to which the glauconite has no selective sorption activity decreased by 3.15 and 1.57%.

Histogram of the degree of purification of phenol

1 — natural glauconite, 2 — activated glauconite 0.1 N NaOH (treatment — 30 min., rinsed), 3 — activated glauconite 0,1 N NaOH (treatment — 30 min., not rinsed), 4 — activated glauconite 0.1 N NaOH (treatment — 60 min., rinsed), 5 — activated glauconite 0,1 N NaOH (treatment — 60 min., not rinsed), 6 — glauconite activated 0.1 N NaOH (boiling point — 60 min., rinsed), 7 — glauconite activated 0,1 N NaOH (boiling point — 60 min., not rinsed), 8 — glauconite activated HCl(с) (treatment — 60 min., rinsed), 9 — glauconite activated HCl(с) (boiling point — 60 min., rinsed), 10 — glauconite activated HCl(с) (boiling point — 30 min., not rinsed)

Figure 7.4 — Histogram of the degree of purification of phenol

Not efficacy acid activation can be explained by the fact that glauconite is largely unstable in acidic and weakly acidic medium even accompanied some leaching of cations from the structure and dispersion of mineral [26].

Table 7.5 — Experimental determination of sorption data phenol sample 4

Тhe initial concentration of phenol Свих, mmol/dm3 1,06 2,12 4,25 6,38 8,51 10,63
Residual concentration of phenol Сзал, mmol/dm3 0,97 1,83 3,73 5,53 7,50 9,50
Adsorption capacity of the sorbent Г, mmol/g 0,04 0,12 0,21 0,34 0,4 0,45
The volume of filtrate, cm3 100 50 25 25 10 10
Lg Г – 0,01 0,26 0,57 0,74 0,88 0,98
Lg Сзал – 1,43 – 0,93 – 0,68 – 0,47 – 0,39 – 0,34

Freundlich equation for phenol is: Г = 0,097·С1,11. The resulting adsorption isotherm indicates the presence of macropores and micropores and a strong intermolecular interaction. The resulting coefficient α = 0,097 indicates low absorption properties.

Adsorption isotherms of phenol in natural coordinates and in lohoryfm coordinates 12 frames, 7 cycles duration of 6 seconds, 114 Kb

Figure 7.5 — Adsorption isotherms of phenol in natural coordinates and in lohoryfm coordinates

Conclusion

According to the results of the executed work the following conclusions have been made:

1 — formation of leachate on MSW landfills were reviewed, sorption purification method was described as the most optimal;

2 — perspectivity and efficiency of use of activated natural sorbents, in particular activated glauconite, for purification of leachate of МSW landfills was proved. Its advantages are: accessibility, possibility of multiple use without regeneration.

In the future we plan to study the sorption activity glauconite modified with respect to heavy metals and dyes.

 

References

  1. Величко Н.В. Оценка состояния почвогрунтов в зоне влияния ларинского полигона промышленно-строительных отходов / Н.В. Величко, О.О. Гладкова, Ю.А. Проскурня// Актуальні проблеми геології. Збірник матеріалів Міжвузівської наукової конференції студентів геологічних, екологічних і гірничих спеціальностей 26 квітня 2013 року. — Донецьк: ДонНТУ, 2013. — С. 23–26
  2. Андоленко С.С. Нормативно-правовое регулирование сферы обращения с отходами в Украине /С.С. Андоленко, И.Н. Ющенко, О.Н. Андрейчук// Наукові праці Донецького національного технічного університету. Серія: Гірничо-геологічна. — Донецьк :ДонНТУ, 2010. —Вип.№12 (173). — С. 184–192
  3. Солодовник М.В. Особенности очистки сточных вод полигонов твердых бытовых отходов / М.В.Солодовник //Программа и тезисы докладов. Часть I. Строительство, архитектура, экология — Х.: ХНАГХ, 2008. — С. 221–223
  4. Краснянский, М.Е. Исследование влияния свалок ТБО г. Донецка и г. Макеевки на природную среду/ М.Е. Краснянский, А. Бельгасем // Экология и науч.-техн. прогресс: Матер. 3 междунар. науч.-практ. конф. студ., аспирантов и мол. ученых / — Пермь: Перм. ГТУ, 2005. — С. 247–255.
  5. Сатин И. В. Сравнительный анализ методов очистки фильтрата / И. В. Сатин, А. С. Трякина// Донбасская национальная академия строительства и архитектуры Сер. Технологія, організація, механізація та геодезичне забезпечення будівництва. Міське будівництво і господарство, 2010. — Вип 3(83). —С. 270–275
  6. Вилсон Д. Утилизация твердых отходов. Т. 1: Пер. с англ. — М.: Стройиздат, 1985. — 336 с.
  7. Гриценко А.В. Технологические основы промышленной переработки отходов мегаполиса/ А.В. Гриценко, Н.П. Горох. — Х.: ХНАДУ, 2005. —340 с.
  8. Щербина Г.П Исследование фильтрационных стоков полигона ТБО для установления возможности утилизации его с использованием фермента класса оксигедаз / Г.П. Щербина// Інформаційно-аналітичний збірник «Санітарна очистка міст та комунальний автотранспорт» К.: Концерн ;Видавничий Дім ;Ін Юре” , 2002. — Вип. 4 . — С. 51–56
  9. Солодовник М.В. Реагентный метод очистки сточных вод полигоновтвердых бытовых отходов / М.В. Солодовник // Материалы III Международной научно-практической конференции «Вода, экология,общество». — Х.: ХНАГХ, 2010. — С. 176–177
  10. Литвин Т. С. Визначення сорбційних властивостей глауконіту / Охорона навколишнього середовища та раціональне використання природних ресурсів — 2012 / Т. С. Литвин, Я. М. Зуб, О.А. Трошина Матерiали ХХII Всеукраїнської наукової конференцiї аспiрантiв і студентів. — Донецьк, ДонНТУ, 2012. —Том 1, — С.104–105
  11. Стеценко, Н. О. Дослідження адсорбції барвних речовин цукрового виробництва природними дисперсними мінералами України / Н. О. Стеценко, О. В. Подобій, О. М. Мірошников, О. В.Грабовська // Магістеріум. Хімічні науки, 2010. — Випуск 40. — С. 37–40.
  12. Лыгин В.И. Адсорбция из растворов на поверхностях твердых тел /В.И. Лыгин. — М.: Мир, 1986. — 488 с.
  13. Орлов Л. О. Ефективність використання антиадгезійного покриття форм для виробництва м’ясних хлібів / Л. О. Орлов, В. Л. Яровий, М. Г. Янковий // Матеріали V всеукраїнської науково-практичної конференції «Теорія і практика сучасного природознавства». Секція «Хімічні та біохімічні науки і технології», 24–25 листопала 2011 р, — С 61–64
  14. Корнілович Б. Еколого-хімічні проблеми видобутку та перероблення уранової сировини / Б. Корнілович, В. Стрелко, Ю. Кошик, В. Павленко //Вісн. НАН України. — 2010. — № 10. — С. 8–14
  15. Петрушка, І. М. Очищення стічних вод від двокомпонентних органічних забрудників методом рідинної хроматографії. / І. М.Петрушка, О. В.Стокалюк, М. С.Мальований, Я. М.Захарко // Хімія, технологія речовин та їх застосування: [збірник наукових праць]/ — Л.: Видавництво Національного університету «Львівська політехніка», 2007. — С. 250–255
  16. Доскач Т. М. Дослідження адсорбційної здатності сумішей на основі мінеральних сорбентів / Т. М. Доскач, М. С. Мальований, З. С. Одноріг, А. О. Мараховська, О. М. Піх //Хімія, технологія речовин та їх застосування: [збірник наукових праць] — Львів: Видавництво Національного університету "Львівська політехніка", 2011. — С.266–269.
  17. Мальований М. Очищення питної води від іонів амонію адсорбцію на природних сорбентах / М. Мальований, Г. Сакалова, А. Мараховська, Н. Чорномаз. // Захист навколишнього середовища. Енергоощадність. Збалансоване природокористування : збірник матеріалів I міжнародного конгресу, Львів, 28–29 червня 2009 р. —Л.: Видавництво Національного університету "Львівська політехніка" 2009, — C. 55
  18. Василінич Т. М. Очищення стічних вод шкіряного виробництва від іонів хрому / Т. М. Василінич // Вісник Хмельницького національного університу. Серія: Технічні науки — № 1. — С. 228–231.
  19. Воюцкий С. С. Курс коллоидной химии / С. С. Воюцкий. — М.: Химия,1976. — 512 с.
  20. Фридрихсберг Д. А. Курс коллоидной химии / Д. А. Фридрихсберг. — Л.: Химия, 1995. — 400 с
  21. Шумяцкий, Ю.И. Адсорбционные процессы. Учебное пособие / Ю.И. Шумяцкий. — М.: РХТУ им. Д.И.Менделеева, 2005. —164 с.
  22. Лыгина Т.З. Технологии химической активации неорганических природных минеральных сорбентов: монография/ Т.З.Лыгина, О.А. Михайлова, А.И. Хацринов, Т.П. Конюхова, Казань: Изд-во Казан. гос. технол. ун-та, 2009. —120 с.
  23. Бовсуновський Є.О. Вплив параметрів кислотної активації суглинку темно-бурого на його сорбційні властивості щодо іонів хрому (ІІІ)/ Є.О. Бовсуновський, О.В. Рябчевський, Ю.Я. Годовська, О.Г. Личманенко// Вісник НАУ. — Х:НАУ —2012. № 4 — С. 123–125
  24. Воды минеральные питьевые лечебные, лечебно-столовые и природные столовые. Метод определения ионов аммония : ГОСТ 23268. 10–78 [действующий от 01.01.74 ]. — М. : ИПК Издательство стандартов, 2010. — 6 с. — (Межгосударственный стандарт).
  25. Вигдорович В.И. Извлечение фенола из водных растворов глауконитом / В.И. Вигдорович, Л.Е. Цыганкова, Д.В. Николенко, А.И. Акулов //Сорбционные и хроматографические процессы. — 2010. — Т. 10. —№ 4. — С. 505–511
  26. Ю.И. Особенности структуры и сорбционно-обменные свойства глауконита Багарякского месторождени / Ю.И. Сухарев, А.Е. Черногорова, Е.А. Кувыкинаи//Известия Челябинского Научного Центра. Серия химия и химическая технология —Челябинск, 1999. —№4. —С. 64–69