Реферат по теме выпускной работы
Содержание
- Введение
- 1. Актуальность темы
- 2. Цель и задачи исследования, планируемые результаты
- 3. Пористые углеродные материалы и их получение
- 4. Применение углеродных сорбентов
- Выводы
- Список источников
Введение
Пористые углеродные материалы (сорбенты) человечество использует на протяжении многих столетий. Еще в XVIII веке была открыта способность древесного угля очищать различные жидкости и поглощать некоторые газы. До начала XX века углеродные сорбенты (главным образом древесный и костный активные угли) применяли преимущественно в пищевой промышленности и виноделии для очистки жидкостей. Необходимость обезвреживания боевых отравляющих веществ, возникшая в ходе первой мировой войны, стимулировала развитие работ по очистке газов. Разработанный российским ученым Н. Д. Зелинским противогаз с активным углем в качестве сорбента до сих пор является наилучшим способом защиты от летучих ядовитых веществ.
В настоящее время основные направления использования углеродных сорбентов связаны с технологическими процессами адсорбционной очистки, разделения, выделения и концентрирования в газовых и жидких средах. Постоянно возрастает роль углеродных сорбентов в решении экологических проблем: очистке питьевой воды, стоков, отходящих газов предприятий промышленности и энергетики. Расширяются области использования углеродных сорбентов в медицине и фармацевтике. Так, например, углеродные гемосорбенты применяют для очистки крови у больных, а энтеросорбенты — внутрь в целях очистки организма от вредных веществ и микробов.
Пористые углеродные материалы вначале получали преимущественно термической обработкой древесины, затем — каменного угля. Сейчас их производят почти из всех видов углеродсодержащего сырья: древесины и целлюлозы, каменных и бурых углей, торфа, нефтяного и каменноугольного пеков, синтетических полимерных материалов, жидких и газообразных углеводородов, различных органических отходов. Современное мировое производство пористых углеродных материалов (ПУМ) приближается к одному миллиону тонн в год.
Углеродные сорбенты используют в различной форме: в виде порошка с размером частиц до 0,8 мм, гранул более крупного размера, блоков различной формы и величины, пленок, волокон тканей. Наиболее распространены порошкообразные сорбенты, которые достаточно просто получать из измельченного сырья.
1. Актуальность темы
Актуальность работы заключается в улучшении качества воды за счет использования композитного адсорбента, полученного из природных минералов.
2. Цель и задачи исследования, планируемые результаты
Целью работы является минимизация содержания накопления и негативного воздействия вредных примесей в воде при помощи её адсорбционной очистки модифицированным природным адсорбентом.
В работе поставлены следующие задачи:
- Провести анализ литературных данных по химическому составу, адсорбционным характеристикам и использованию минеральных адсорбентов в сравнении с другими минеральными адсорбентами.
- Исследовать эффективность очистки воды с использованием в качестве сорбционных материалов природный кремнезем. Исследовать состав, физические и химические свойства полученного модифицированного сорбента.
- Разработать композиционные адсорбенты на основе природных минеральных и органических компонентов.
- Оценить улучшение качества воды и предложить способы утилизации отработанных сорбентов.
Объект исследования: природный адсорбент.
Предмет исследования: процессы адсорбционной очистки воды от вредных примесей с помощью адсорбента, полученного на основе природных минеральных компонентов.
Практическое значение полученных результатов: полученные результаты будут использованы для разработки рекомендаций по улучшению качества воды.
3. Пористые углеродные материалы и их получение
Пористый углеродный материал (ПУМ) представляет собой конструкцию, построенную подобно структуре графита, однако в ней чередуются упорядоченные и неупорядоченные
области из углеродных колец — гексагонов [1]. В отличие от графита ПУМ обладает свободным пористым пространством, которое обычно представлено трехмерным лабиринтом из
взаимосвязанных расширений и сужений различного размера и формы. Различают микропоры (размер 2 нм), мезопоры (размер в диапазоне от 2 до 50 нм) и макропоры с размером более 50 нм. Среди микропор выделяют супермикропоры с размером в диапазоне 0,7–2 нм и ультрамикропоры с размером 0,6–0,7 нм. Благодаря наличию пор ПУМ имеют высокую удельную поверхность и способны поглощать (адсорбировать) различные вещества из жидкостей и газов. Понятие адсорбция
трактуется как повышение концентрации веществ вблизи раздела фаз. Явления адсорбции описаны в [2,3].
Способность ПУМ к адсорбции различных молекул определяется строением его поверхности, природой и концентрацией поверхностных реакционноспособных групп. В качестве последних обычно выступают кислородсодержащие функциональные группы, образующиеся в результате окислительной обработки поверхности углеродного материала: фенольные (гидроксильные), карбонильные (хиноидные), карбоксильные, эфирные, енольные, лактонные. При соответствующих условиях синтеза и обработки ПУМ на их поверхности возможно получение функциональных групп, содержащих азот, серу, галогены, фосфор.
Получение ПУМ из твердого органического сырья. Пористые углеродные материалы образуются в результате протекания топохимических реакций при пиролизе (нагреве при отсутствии кислорода воздуха) ископаемых углей, торфа, древесины, целлюлозы, карбидов.
На рисунке 2 представлено производство углеродных сорбентов в настоящее время: 1 — из древесины производят около 36 % углеродных сорбентов; 2 — из каменных углей — 28 %; 3 — из бурых углей — 14,6 %; 4 — из торфа — 10 %; 5 — из скорлупы кокосовых орехов — около 10 % [4].
В соответствии со сформировавшимися представлениями в ходе термических превращений твердого органического сырья в интервале температур 650–1000 С удаляются гетероатомы, часть углерода переходит из sp3 в sp2 состояние, часть удаляется с газообразными и жидкими компонентами. В объеме твердого материала образуются так называемые графены, состоящие из плоских полиядерных ароматических молекул с двухмерной упорядоченностью атомов углерода. С повышением температуры образуются кластеры из параллельно уложенных графенов, размер которых и степень структурной упорядоченности возрастают с температурой обработки: сначала образуются разупорядоченные протяженные пачки слоев из графеновых кластеров и затем формируется упорядоченная структура графита [5].
Количество и размер образующихся пор определяются природой сырья и режимными параметрами процесса термической обработки. Важное значение имеет скорость нагрева сырья. Общий объем пор, а также количество крупных пор (макропор) значительно возрастают с ростом скорости нагрева сырья. Медленные скорости нагрева реализуются в технологиях пиролиза в реакторах с неподвижным слоем сырья. В частности, таким образом получают древесный уголь [7] Более производительные технологии пиролиза основаны на использовании измельченного сырья и реакторов с так называемым псевдоожиженным или кипящим слоем: увлекаемые потоком газа мелкие частицы сырья как бы находятся в кипящем состоянии. Преимуществом реакторов с кипящим слоем является высокая скорость массо- и теплопереноса, что обеспечивает повышенную интенсивность процесса пиролиза по сравнению с технологиями пиролиза в неподвижном слое сырья. Объем пор и распределение пор по радиусам можно регулировать также путем изменения продолжительности процесса пиролиза. В реакторах с псевдоожиженным слоем продолжительность пребывания частиц измельченного сырья в зоне пиролиза составляет от десятых долей секунды до нескольких минут.
Углеродные материалы, получаемые пиролизом твердого сырья, как правило, обладают слаборазвитой пористой структурой и невысокой адсорбционной способностью. Для повышения качества углеродных сорбентов их дополнительно подвергают выдержке при повышенной температуре в присутствии паров воды и углерода оксид (так называемая стадия активации).
В процессе активации возрастают объем пор, удельная поверхность сорбента, меняется соотношение между объемами микро-, мезо- и макропор. Скорость газификации поверхностного углерода в процессе активации зависит от степени структурной упорядоченности углеродного материала. Наиболее легко и быстро газифицируется углерод в разупорядоченных областях углеродной поверхности.
4. Применение углеродных сорбентов
Углеродные сорбенты применяют в различных технологических процессах обезвреживания газовых и сточных выбросов, в медицине, хроматографии. Пути их использования в современной промышленности рассмотрены, например, в монографии [8].
Для различных областей применения требуются углеродные сорбенты со специфическим комплексом свойств: определенной пористой структурой, специфическим составом поверхностных функциональных групп требуемой формы, прочностью, степенью чистоты. Для адсорбционной очистки жидкостей и извлечения ценных металлов из растворов важное значение имеет такой показатель, как гидрофильность (способность к смачиванию водой) поверхности углеродного сорбента. Чистота сорбента (например, количество зольной части) не играет существенной роли в процессах очистки загрязненных стоков и газовых выбросов. Однако для сорбционного извлечения благородных металлов, например золота, регламентируется количество минеральных примесей в сорбенте. Размер пор, прочность и форма углеродного сорбента имеют решающее значение при его использовании в качестве пористой мембраны. Для сорбентов, используемых в хроматографических целях, важен состав поверхностных функциональных групп [8].
Стоимость углеродных сорбентов является лимитирующим фактором в их крупномасштабном использовании для охраны окружающей среды. Для очистки газовых выбросов и стоков стремятся применять достаточно дешевые порошкообразные сорбенты, получаемые из доступного и недорогого сырья (ископаемых твердых топлив, древесных отходов) с использованием интенсивных технологий совмещенного процесса пиролиза и активации в реакторе с псевдоожиженным слоем.
Свойства более высококачественных активированных углеродных сорбентов во многих случаях зависят от структуры исходных ПУМ, которая определяется условиями их получения. В качестве примера приведены данные по влиянию активирующей обработки водяным паром ПУМ, полученных из бурого угля с использованием различных технологий пиролиза, на их сорбционные свойства.
Как следует из приведенных данных, максимальной сорбционной способностью отличаются сорбенты, получаемые из бурого угля в условиях практического отсутствия кислорода в газовой фазе. К ним относятся ПУМ, получаемые пиролизом в псевдоожиженном каталитическом слое [5].
Вывод
Пористые углеродные материалы широко применяются в промышленности и охране окружающей среды. В традиционных областях использования, прежде всего в технологических процессах, связанных с разделением, выделением и очисткой веществ, углеродными сорбентами постепенно заменяют менее эффективные неорганические сорбционные материалы. Области их применения постоянно расширяются благодаря разработке методов получения ПУМ с принципиально новыми свойствами: углеродных композиционных материалов, молекулярных сит, волокон, фуллеренов, полых нанотрубок и др.
Крупномасштабное использование углеродных сорбентов в целях охраны окружающей среды (очистка стоков, газовых выбросов, загрязненных почв) требует расширения производства ПУМ из дешевых видов органического сырья: ископаемых твердых топлив, различных природных и техногенных органических отходов. На основе сложившихся теоретических представлений о механизме формирования структуры ПУМ при пиролизе твердого и газообразного органического сырья и активации углеродных материалов разрабатываются эффективные методы получения углеродных сорбентов с требуемым комплексом свойств. В частности, высокоскоростные методы пиролиза и активации в аппаратах кипящего слоя позволяют получать из доступного сырья дешевые углеродные сорбенты, которые с успехом можно применять в процессах очистки стоков и газовых выбросов вместо дорогостоящих сорбентов, получаемых из более дефицитного сырья (антрациты, целлюлоза, пеки).
Перспективные направления использования ПУМ связаны с каталитическим синтезом углерод-минеральных и углерод-углеродных композитов с уникальными свойствами. Поскольку пористые углеродные материалы получают из любого вида углеродсодержащего сырья, включая отходы, и сами применяются в целях охраны окружающей среды, можно уверенно прогнозировать, что ПУМ внесут важный вклад в решение назревших проблем устойчивого развития человечества в XXI веке.
Список источников
- В. Б. Фенелонов Пористый углерод. Новосибирск: ИК СО РАН, 1995. — 513 с.
- С. Грег, К. Синг Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. — 310 с.
- Рощина Т.М. Адсорбционные явления и поверхность // Соросовский Образовательный Журнал. 1998. 2. С. 89–94.
- Б. Н. Кузнецов , М. Л. Щипко, С. А. Кузнецова , В. Е. Тарабанько Новые подходы в переработке твердого органического сырья. Красноярск, 1991. — 371 с.
- В. А. Лихолобова Каталитический синтез углеродных материалов и их применение в катализе // Соросовский Образовательный Журнал. 1997. — 5. С. 35–42.
- Золотухин И.В. Фуллерит — новая форма углерода // Там же. 1996. — 2. С. 51.
- Л. Н. Сидоров Газовые кластеры и фулерены // Там же. 1998. — 3. С. 65.
- Х. Кинле,Э. Бадер Активные угли и их промышленное применение. Л.: Химия, 1984. 216 с.