Авторы: Староверов К.C.
Источник: Компания КОМПЭЛ
— https://www.compel.ru/lib/54348
Староверов К.C. Новые МЭМС–датчики STMicroelectronics.
Рассмотрены микроэлектромеханические датчики (трехосевые гироскопы) от компании STMicroelectronics.
Компания STMicroelectronics (STM), ставшая по мнению авторитетной аналитической компании iSuppli восходящей звездой и номером один на рынке МЭМС–датчиков движения в 2008 году [1], по–прежнему остается ведущим игроком на этой арене. Успех компании связан с передовыми рабочими характеристиками их продукции, которые дополняются малыми габаритами, простой применения, экономичностью и адекватной стоимостью. Ассортимент МЭМС–датчиков компании STM преимущественно составляют акселерометры и гироскопы [2-3], позволяющие контролировать параметры линейных и угловых перемещений, соответственно. Текущий год ознаменовался появлением в ассортименте STM новой оригинальной МЭМС–продукции: трехосевых гироскопов L3G4200D/DH с цифровым выходом и модуля цифрового компаса LSM303DLH.
Свой первый трехосевой гироскоп LYPR540AH компания STM представила в ноябре прошлого года. Этот МЭМС–датчик размещен в корпусе с размерами 4,4x7,5x1,1 мм и поддерживает два диапазона контроля угловых скоростей (±400 и ±1600 град/с). Вывод результатов измерений, так же как и у одно– и двухосевых предшественников [3], организован на усиленных и неусиленных аналоговых выходах. По сравнению с LYPR540AH трехосевые новинки этого года L3G4200D/DH существенно отличаются в сторону улучшения рабочих характеристик за счет расширения диапазона контролируемых угловых скоростей (поддерживаются три диапазона ±250/500/2000 град/с), применения цифрового SPI/I2C-совместимого интерфейса для вывода данных, возможности перевода в экономичные режимы работы с малым потребляемым током (режим SLEEP: 1,5 мА; режим POWER-DOWN: 5 мкА) и размещения в ультракомпактном корпусе LGA–16 (4x4x1 мм). Добиться столь существенного отрыва в рабочих характеристиках удалось благодаря использованию единой измерительной структуры для контроля движения в трех ортогональных осях взамен традиционного подхода с использованием трех измерительных структур, как в случае LYPR540AH. Кроме того, применение единой измерительной структуры исключает проблему взаимного влияния, что положительно сказывается на точности измерений и способствует снижению потребляемого тока в активном режиме работы примерно на 40% — до уровня 6,1 мА (номинальное значение). Значения угловых скоростей выводятся в 16–битном формате. Обе микросхемы рассчитаны на работу при напряжении питания 2,4…3,6 В и в промышленном диапазоне температур -40…85°С.
Перечисленные характеристики являются общим набором особенностей для L3G4200D/DH, а разобраться с их отличиями поможет рисунок 1.
Из представленной здесь структурной схемы видно, что L3G4200DH отличается повышенной степенью интеграции. У L3G4200DH предусмотрен 96–уровневый буфер FIFO, который позволяет накопить 32 набора значений угловых скоростей относительно осей x, y и z. Использование буфера FIFO позволит снизить частоту генерации прерываний управляющего процессора, что, как следствие, дает ему возможность дольше находиться в дежурном режиме работы и, в конечном счете, позволяет существенно снизить средний потребляемый системой ток. L3G4200DH содержит дополнительный АЦП для 8–битной оцифровки напряжения встроенного датчика температуры, что дает возможность избавиться от внешней RС датчика температуры в системах, где необходима функция контроля температуры. Наличие у L3G4200DH буфера FIFO отразилось и на различиях в назначении выводов. В отличие от L3G4200D, у микросхемы с индексом DH вывод готовности данных (DRDY) имеет альтернативное назначение – выход генерации прерывания по заполнению буфера (INT2).
Благодаря малым размерам и низкому потребляемому току L3G4200D/L3G4200DH перспективны для применения в набирающих популярность 3D–пультах дистанционного управления (например, для совместной работы с презентационным оборудованием) и 3D–манипуляторах мышь
, которые обеспечивают работу с системами трехмерного моделирования, включая компьютерные игры и САПР, через интуитивно–понятный интерфейс. Кроме того, эти трехосевые гироскопы могут применяться в системах позиционирования для повышения точности устройств спутниковой навигации и сохранения ее работоспособности в условиях нестабильного или полного отсутствия приема спутниковых сигналов. Пример — на рисунке 2.
Здесь представлена структура системы автоматического мониторинга транспорта, предназначенной для формирования информации о местоположении транспортных средств в реальном времени. Для повышения точности спутниковой навигации дополнительно учитываются данные об инерциальном движении, которые оцениваются с помощью гироскопа и имеющегося в составе любого современного транспортного средства одометра (датчик количества оборотов колеса, предназначенный для измерения пройденного пути). После обработки всей оперативной информации формируются более точные данные о положении, направлении и скорости движения, которые передаются в коммуникационный центр через РЧ–канал, а затем выводятся на экран в диспетчерской и отправляются другим системам. Помимо L3G4200D/L3G4200DH отличным кандидатом для работы в подобном применении может служить модуль LSM320HAY30, который в 28–выводном корпусе LGA (4,4x7,5x1,1 мм) интегрирует трехосевой акселерометр и двухосевой гироскоп (pitch, yaw). Такой модуль способен полностью контролировать движение инерциальной системы, избавляет от необходимости использования одометра и создает предпосылки для беспроводной реализации устройства мониторинга.
Следующий участник данного обзора является плодом сотрудничества STM и известного новатора в области измерительных технологий — компании Honeywell. Разработанная последней анизотропная магниторезистивная (AMR) технология позволяет создавать магниточувствительные элементы, способные контролировать силу и направление магнитного поля Земли и определять направление по отношению к Северному магнитному полюсу. Помимо лучшей в своем классе точности технология AMR обеспечивает малое электропотребление, автоматическую компенсацию смещений (исключает необходимость калибровки) и способность работать в условиях очень малой напряженности магнитного поля, в т.ч. внутри автомобилей и зданий из металлоконструкций, а также в географических зонах с большими значениями широты, включая север РФ. Перечисленные возможности разработки Honeywell теперь доступны в новой продукции компании STM — модуле цифрового компаса LSM303DLH. В дополнение к магнетометру модуль содержит трехосевой акселерометр (по набору регистров и программированию идентичен LIS331DLH/M/F). Появление LSM303DLH является ответом на возрастающую потребность в портативной электронной технике потребительского назначения (в т.ч. смарт-фоны и КПК) с расширенными функциональными возможностями навигации. Среди этих возможностей — автоматическая ориентация карты, индикация направления (в т.ч. при отсутствии движения), сигнализация о наличии интересующих объектов (театры, рестораны, станции метро и т.п.) в выбранном направлении и сохранение функций навигации в условиях неустойчивого или полного отсутствия приема сигналов от систем глобального спутникового позиционирования.
Структура модуля LSM303DLH показана на рисунке 3.
Каналы измерения напряженности магнитного поля предусматривают работу в одном из семи программно-выбираемых диапазонов от ±(0,13…0,81) мТл (ведется разработка модуля для диапазона до 2 мТл). В свою очередь каналы измерения линейных ускорений поддерживают работу в одном из трех программно–задаваемых диапазонов ±2/±4/±8g. Вывод результатов измерений организован в цифровом виде (16–битный формат). Для этого в модуль интегрированы АЦП и два независимых последовательных интерфейса I2C (поддерживаются скоростные режимы 100 и 400 кГц). Модуль предусматривает возможность раздельного перевода в экономичный режим работы трактов магнетометра и акселерометра и генерации двух сигналов прерывания с гибкой программируемой настройкой. Данные прерывания позволяют активизировать управляющий процессор в случае обнаружения движения и свободного падения. Функциональные возможности модуля завершают функции тестирования, которые могут быть инициированы по запросу пользователя раздельно для трактов магнетометра и акселерометра. Столь внушительные возможности модуля реализованы в рамках чрезвычайно компактного 28-выводного корпуса LGA с размерами 5х5х1 мм. Его рабочие характеристики гарантированы для диапазонов напряжения питания 2,5…3,3 В и температур -30…85°C.
Несмотря на первоочередную ориентацию на потребительские применения, модуль LSM303DLH может с успехом использоваться в разнообразных промышленных приложениях: в системах навигации любых транспортных средств; охранных системах и системах безопасности; строительном оборудовании; системах позиционирования антенн; автоматических системах выравнивания; в буровом оборудовании; в системах управления автомобильным движением (в т.ч. в парковочных системах); в метеорологическом и геофизическом оборудовании (в т.ч. при мониторинге сейсмоактивности), а также в робототехнике.
Модуль LSM303DLH доступен в предустановленном виде в составе демонстрационной платы iNEMO второго поколения (код заказа STEVAL–MKI062V2). Данная плата может выступать в роли завершенной платформы для контроля инерциальной системы с 10 степенями свободы. Для этой цели на ней установлены двухосевой гироскоп (roll, pitch) LPR430AL, одноосевой гироскоп (yaw) LY330ALH, рассмотренный только что модуль трехосевого магнетометра и трехосевого акселерометра LSM303DLH, датчик давления LPS001DL (300…1100 мбар) с функцией барометра и датчик температуры STLM75 (измеряемый диапазон -55…125°C). Логику работы платы определяет установленный на ней 32–битный микроконтроллер STM32F103RE (256…512 кбайт flash–памяти, модули USB и CAN, 11 таймеров, три АЦП и 13 коммуникационных интерфейсов). Для взаимодействия с внешним миром предусмотрены разъем для подключения устройств беспроводной связи, порты COM и USB 2.0 FS. Кроме того, на плате предусмотрены разъем для установки карт памяти MicroSDTM, программируемые светодиод и кнопка. Примечательно, что при столь внушительных возможностях платы ее размеры чрезвычайно малы и составляют 4х4 см. В связи с этим она идеальна для использования в качестве завершенного решения для интеграции в разнообразные системы, в т.ч. системы виртуальной реальности, дополненной реальности [4], стабилизации изображений, человеко–машинных интерфейсов и робототехнические системы.
Согласно прогнозам iSuppli, в ближайшие годы будет иметь место существенный рост объемов продаж электроники потребительского назначения с улучшенными функциями навигации на местности и улучшенными до интуитивного уровня возможностями пользовательского интерфейса. В частности, среднегодовой темп роста объемов продаж только одних мобильных телефонов со встроенным цифровым компасом составит порядка 130% и сохранится вплоть до 2013 г. Новая продукция STM имеет все шансы для успешной конкуренции на массовом рынке потребительской электроники. Помимо отличных рабочих характеристик этому способствует учет всех требований использования в портативной электронике, включая очень малые размеры корпуса, простоту схемы включения, низковольтное питание, малый потребляемый ток в активном режиме работы и возможность перевода в экономичный режим работы. Благодаря гарантированности рабочих характеристик в пределах широкого диапазона температур (-30/40…85°С) новая продукция STM также с успехом может применяться в разнообразных промышленных применениях.
1. Jeremie Bouchaud, Richard Dixon. MEMS Market brief, iSuppli, January 2009
2. Староверов К. МЭМС–датчики движения от STMicroelectronics: акселерометры и гироскопы//Электронные компоненты, 2009, №12 — С.53–57.
3. Староверов К. Новое семейство одно– и двухосевых гироскопов//Новости электроники, 2009, №14 — С.16–18.
4. Статья Википедии http://ru.wikipedia.org/wiki/Дополненная_реальность