Автобиография
Ссылки
Отчет по поиску
Автореферат
Электронная библиотека
Индивидуальное задание
Статья
Написать мне письмо

DonNTU           Master's portal

              

 

Abdul-Jaleel Hamad Majeed

RESEARCH OF FRACTAL PROPERTIES OF THE MICRORELIEF OF THE PROCESSED SURFACES

 

 

Urgency of work:

 

As it is known creation of surfaces with the certain micro geometrical properties is one of the primary goals of mechanical engineering. Especially it concerns to surfaces of especially responsible products of avia-space technology, instrument making, precision machine-tool construction, etc. Moreover, the question of maintenance of micro geometry of a surface is especially actual at development of new technologies of processing of surfaces both mechanical, and physicochemical ways of processing, in the field of micro-and nanotechnology.

Quality of a surface are traditionally characterized by a roughness – an arithmetic-mean deviation, the maximal height of roughness, average step of roughness of a structure, etc. and physicomechanical properties of a superficial layer.

 

 

 

 The roughness of a surface as many researchers have shown, is one of the basic parameters of quality of a surface. In many cases the micro geometry of a superficial layer predetermines behavior of a surface during its operation, and in case of micro-and nanotechnology the roughness is considered not as secondary structure but as a property of the material structure.

As a rule, the micro geometry of a superficial layer is considered as a certain static object which was generated during some influence. Classically in processing of materials by cutting the roughness is a geometrical prototype of a trajectory of moving of the tool which is set by kinematics and modes of processing. On the other hand during processing power, temperature and other fields are formed, there is a chemical influence on a surface, there are high pressures in a zone of contact of the tool and a processable surface, movement of dispositions, etc. owing to what the structure of a superficial layer changes. Therefore formation of a surface as a whole, and microgeometry in particular are the result of the influence of set of processes, and not just cleanly geometrical "responses" of action of the tool.

Within the limits of the considered concept of "collective" formation of a roughness it is possible to tell, that such object as the microgeometry of a surface is dynamic system. Studying of dynamic system assumes studying of its properties which are defined by the some invariant (for example, Lyapunov's parameter, entropy, etc.). Therefore in this case use of classical geometrical parameters of a roughness is insufficient or simply impossible. Moreover, geometrical parameters do not display such important property of a roughness as dynamic system – evolution.

Thus, new approaches in an estimation of microgeometry of a surface are necessary and one of such approaches can be use of the theory of fractals. Application of the theory of fractals will allow to bring a new parameter for an estimation of a roughness, to create base not only for fractal classifications, but forecasting of change of microgeometry during its formation, both at a stage of processing by technological methods, and at a stage of operation.

The purpose of work – establishment of regularities of change of fractal microrelief properties of the processed surfaces

 

     Objectives of work

  1. To study the parameters describing a microrelief of a surface.
  2. To study influence of modes of processing on a roughness of a surface.
  3. To study the basic methods of definition of fractal characteristics of objects.
  4. To define fractal properties of a microrelief of the processed surfaces and to establish interrelation with conditions of processing.
  5. To offer fractal classification of a microrelief of surfaces.

 

The plan of work

Introduction

  1. Modern condition of question of researches. The purpose and research problems.

1.1.     The parameters describing a condition of a superficial layer of details of machines.

1.2.     Formation of a microrelief of a surface of a detail during machining.

1.3.     Influence of a roughness of a surface on operational parameters of details of machines.

1.4.     The purpose and research problems.

  1. Fundamentals of the theory of fractals.

2.1.     Definition of fractal.

2.2.     The basic characteristics of fractals.

2.3.     Bases of R/S – analysis.

2.4.     Conclusions.

3.  Experimental researches of formation of a roughness of surfaces of details during machining.

3.1.     Technique of carrying out of experimental researches. Devices and the equipment.

3.2.     Influence of modes of processing at turning on a roughness of a surface.

3.3.     Influence of conditions of processing by grinding on a roughness of a surface

3.4.     Influence of conditions of processing PPD on a roughness of a surface.

3.5.     Conclusions

  1. Definition of fractal properties of a microrelief of the processed surfaces.

4.1.     The R/S-analysis talyrond trace the processed surfaces.

4.2.     Cellular way of an estimation fractal dimensions of the processed surfaces.

4.3.     Influence of conditions of processing of a surface on fractal dimension of a microrelief.

4.4.     Fractal classification of a microrelief of surfaces.

4.5.     Conclusions.

The conclusion

The list of the literature

Appendix

The literature:

1.       А.А. Потапов, В.В. Булавкин, В.А. Герман и др. Исследование микрорельефа              обработанных поверхностей с помощью методов фрактальных сигнатур. // Журнал  технической физики, 2005, том 75, вып. 5. – С. 28-45.

2.       Федер Е. Фракталы. Пер. с англ. – М.: Мир, 1991. – 254 с.

3.       Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. – Ижевск: НИЦ   «Регулярная и хаотическая динамика», 2001. – 128 с.

4.       Ю.Н. Кликушин. Фрактальная шкала для измерения формы распределений   вероятности // Журнал радиоэлектроники № 3, 2000. – С. 15-18.

5.       Хакен Г. Синергетика. - М.: Мир, 1980. – 400с.

6.       Иванова В.С., Баланкин А.С., Бунин И.Ж. и др. Синергетика и фракталы в материаловедении. - М.: Наука, 1994. – 383 с.

7.       Божокин С. В.,Паршин Д.А. Фракталы и мультифракталы. – Ижевкск: НИЦ ((Регулярная и хаотическая динамика)),2001,128с.

8.       Р.М. Кроновер. Фракталы и Хаос в динамических системах. Основы теории. Москва : Постмаркет,2000.-352с.

9.       Лоскутов А.Ю.,Михайлов А.С. Введение в синсргетику:Учеб.руководство.-М.:Наука. Гл.ред. физ.-маг.лит.,1990.272с.-ISBN 5-02-014475-4

Страницы в Интернете:

1.       http://homr.ural.ru~shabum/fractal/index.htm

2.       http://chat.ru/~fractals/index.htm

3.       http://www.visit.net/cplusp/all_96/6n96y1a.htm

4.       http://www.iph.ras.ru/~mifs/rus/danilov.htm

5.       http://www.geocities.com/capecanaveral/2854/

6.       http://archives.math.utk.edu/topics/fractals.html

7.       http://www.cosy.sbg.ae.at/rec/ifs/f-fag.html