Master of DonNTU Nesterenko Dmitriy

Nesterenko Dmitriy

Faculty: Computer Science
Speciality: Software engineering
Theme of master's work:

Automatic recognition of isolated words of Russian language based on Wavelet Analysis

Scientific adviser: Cand.Tech.Sci. Fedyaev O.

Abstract

Subject urgency

Currently wavelets begin to be used at the decision of various applications: pattern recognition, in processing and synthesis of various signals (for example, speech), when analyzing the images, and in many other cases. However scientists and researchers have not reflected all advantages of wavelets on practice yet. All these facts cause an urgency of this work are from the analysis of scientific publications in this area.

Purpose and problems of developments and research

Purpose of work

The work aim is theoretical substantiation of wavelet analysis application to the developing system, which allow to solve a problem of automatic recognition of isolated words of Russian most effectively.

Subject of development and research

Subject of researches is the mathematical apparatus of the wavelet-analysis for voice signals. Which allow to present a speech signal most effectively by using of wavelets. Methods of the speech recognition theory also.

Object of development and research

Object of research are hardware-software means of speech signal automatic recognition.

Methodology and research methods

To achieve the objectives, methods of wavelets-transformations theory, theories of digital signals processing, theories of artificial neural networks, theories of indistinct systems and the theory of speech images recognition are used.

Scientific novelty

A new way to digital representation of speech signal using wavelets is offered. Which allow to improve neuro-indistinct recognition of the isolated words of Russian.

Main content of work

The term "wavelet" was first introduces by expert in seismography J.Morlet. In 80th it was related with properties analysis of seismic and acoustic signals. Translated from English means «short (or small) wave» literally [1].

Wavelets are functions that have some important properties. The main of them are the possibility to move in time and scalability.

Let's look at «Mexican hat» (MHAT) wavelet type, which is the second derivative of Gaussian function. Its shape is defined by expression:

Where

MHAT graph with different values of scale and carrying over is presented on fig. 1.


Graphic presentation of MHAT wavelet with different values of scale and carrying (Animation)
Figure 1 - Graphic representation of MHAT wavelet with different parameters (Animation consist 8 shots, 6 loops, 48 КB)

Process of decomposition of any input signal by wavelets is called «direct wavelet-transformation» (DWT).

In fact, DWT is decomposition of a signal using wavelets with all possible shifts and stretching/compression. The problem of wavelets coefficients calculation is performed.

The wavelet is defined by expression:

Where

Formally, the calculation of wavelet coefficients is realized in the next way:

Where

For example, here presented a direct wavelet-transformation of function


To perform calculations the system of computer mathematics Mathcad was used. The developed program of wavelet coefficients obtaining is presented on fig. 2.


Programm of DWT of signal in system Mathcad
Figure 2 - Direct wavelet-transformation of signal in system Mathcad

In result wavelet coefficients for the specified range of scales and shifts were obtained.

Obtained coefficients for convenience and enhance the information content represents by using wavelet-spectrograms. They make easy to identify the smallest local features of functions, signals, images binding them to time or to coordinates. The obtained wavelets coefficients in the form of the wavelet-spectrogram are represented on fig. 3.


Wavelet-spectrogram
Figure 3 - Wavelet-spectrogram

Obtained wavelet spectrogram shows all signal characteristics at certain wavelet scale and shift. Thus, it can be used further as a graphic image for recognition and for solving a problem of determining membership in a certain class of images. With the help of wavelets we can do preliminary division of a speech signal into phonemes and then create their spectrograms. Which can use further in graphic images recognition.

Conclusions

Although the wavelet analysis mathematical apparatus is well developed also the theory, in general, executed, wavelets still leave an extensive field for researches. It is enough to tell that the choosing of most suitable wavelet for the analysis of the concrete data is more like art, than routine work [3]. Besides, the task of developing applications that use wavelet-analysis can be applied in many areas.

Literature

  1. Дьяконов В.П. От теории к практике. Изд 2-е, перераб и доп.- М.: СОЛОН-Пресс, 2004. – 400 с.
  2. Астафьева Н.М. Вейвлет-анализ: Основы теории и примеры применения. – Успехи физических наук, т.166, № 11, 1996 г, стр. 1145-1170.
  3. Основы теории вейвлет-преобразования. // Библиотека BaseGroup.ru – Сайт http://www.basegroup.ru/library/cleaning/intro-to-wavelets/
  4. Дремин И.М., Иванов О.В., Нечитайло В.А. Вейвлеты и их использование. - Успехи физических наук, т. 171, 2001 г, №5 с. 465-500.
  5. Дремин И.М.,Иванов О.В., Нечитайло В.А. Практическое применение вейвлет-анализа // Наука производству, 2000. – № 6. – С. 13–15.
  6. Леонович А.А. Вейвлет-обработка речевых сигналов в распознавании речи. - Конференции ИВТ СО РАН, Красноярский Государственный Технический Университет, 2004 г.
  7. Новиков Л.В. Основы вейвлет-анализа сигналов. Учебное пособие. 1999. - 152 с.: ил.
  8. Смолнецев Н.К. Основы теории вейвлетов. Вейвлеты в MATLAB. – М.: ДМК Пресс, 2005. – 304с., ил.
  9. Добеши И. Десять лекций по вейвлетам. М.: РХД – 2001г.
  10. Левкович-Маслюк Л. Дайджест вэйвлет-анализа, в двух формулах и 22 рисунках, журнал «КОМПЬЮТЕРРА» №8, от 02/03/98. - Сайт http://offline.computerra.ru/1998/236/1123
  11. Шаховая И.А. «Нейросетевая модель мониторинга технологического процесса выплавки стали» / Портал магистров ДонНТУ, - http://masters.donntu.ru/2008/fvti/shakhovaya/
  12. Рябиченко А.В. «Специализированная компьютерная система анализа вызванных потенциалов головного мозга человека на основе Вейвлет преобразований» / Портал магистров ДонНТУ, - http://www.masters.donntu.ru/2007/kita/ryabichenko/
  13. Киселёв А.Ю. «Использование метода вейвлет анализа для контроля технического состояния поршневых компрессоров» / Портал магистров ДонНТУ, - http://www.masters.donntu.ru/2006/kita/kiselyov/
  14. Скляренко М.И. «Анализ нестационарных сигналов при помощи вейвлет преобразования» / Портал магистров ДонНТУ, - http://www.masters.donntu.ru/2006/kita/sklyarenko/
  15. Стояновский С.Ю. «Разработка и исследование алгоритма сжатия голосовых данных с использованием вейвлет-преобразований» / Портал магистров ДонНТУ, - http://www.masters.donntu.ru/2005/kita/stoyanovsky/

Comment

When writing this Master's abstract work is not complete yet. Planned completion: December 2009. Full text of the work and materials of the topic can be obtained from the author or his Scientific adviser after that date.