Master of Donetsk National Technical University Tokariev Alexey
  • Name: Tokarev Alexey
  • Mining Faculty
  • Cathedra Development of Mineral Deposits
  • Speciality "Development of Mineral Deposits"
  • Selection and justification of technological solutions to improve the bearing capacity of rubble of the bands in the mine "Holodnaya Balka" SE "Makeevugol"
  • Scientific Supervisor: D.T.S., Prof. Kasyan Nikolay Nikolaevich ›

Abstract

Introduction

  1. Topicality
  2. Goals and Objectives
  3. Alleged scientific novelty
  4. Expected practical results
  5. A review of research on the topic
  6. Main part
  7. Conclusion
  8. Literature

Topicality

Analysis of current trends of underground coal seams of Ukraine suggests that with increasing depth of mining operations are becoming increasingly common scheme mining excavation sites to the maintenance of development workings behind the working face. However, this involves a challenge to ensure their operational status behind the lava zones of influence of clean-up and steady rock pressure, as well as the need to develop effective ways and means of excavation workings, in particular methods of using an ordinary rock and bounding surfaces.

Application of methods of using an ordinary rock and bounding surfaces can significantly reduce labor costs by reducing the amount mortgaged species while reducing the cost of maintaining the excavation due to increased carrying capacity of constructed structures.

A detailed study of modern means of protection can be concluded that the security installations, regardless of its degree of compliance with time begins to run as a stamp, including ways of using an ordinary rock and bounding surfaces. This circumstance requires the development of measures to neutralize this effect on the stability cutter production, namely, determining the parameters of security installations in which the forces arising from the action of the load on the security installations will not be directed toward the output.

In our opinion, this can be achieved using security structures of variable stiffness. And the alarm is supposed to build the design of an ordinary rock in order to reduce the cost of maintaining the cutter production.

Goals and Objectives

Objective: To study how the parameters of excavation workings pedigree supports variable stiffness

To achieve this goal it is necessary to solve the following problem:

  • analysis of measures to preserve the stability of development workings, to use the energy of rock mass;
  • a method of excavation workings pedigree supports variable stiffness;
  • carrying out mathematical modeling to establish the optimal parameters of the proposed method;
  • development of the technology of excavation workings pedigree supports variable stiffness.

Alleged scientific novelty

Scientific novelty of the work is to extend the concepts of mechanical processes in rock pillars from the bounding surfaces and their surrounding rocks.

Expected practical results

A method of excavation workings pedigree supports variable stiffness.

A review of research on the topic

To date, there is a large amount of DonNTU studies of stress-strain state of the ambient array and proposed a sufficiently large set of measures to preserve stability of the excavation workings through the management of his condition. Among them, for example, can be identified:

  1. Compensation system for the protection of mine workings [4], in which to improve the sustainability of protected production and reduction of swelling rocks, prepared cavity compensation made to the entire bed thickness with the placement of pillars between the protected and the elaboration of the cavities, which further strengthened the castle-type anchors with a length exceeding half the width of pillars.
  2. Way to prevent heaving of rocks in the soil excavations, including the drilling of wells and the formation of unloading zone of destruction through kamufletnogo explosion of charges in the face of the disposable wells [5].
  3. Overview of operating modes of pump and blower systems, ways of regulating them, and especially power consumption. [10]
  4. Way to maintain the development workings, stored for reuse, including the construction to the ongoing development of arch supports from a compliant spetsprofilya working in asymmetrically applied loads at the approach of first adjacent lava [6].
  5. Proposed security devices, including a flexible envelope of a sound, vozduhopropuskayuschey tissue filled with backfilling material, the end elements and the outer metal reinforcement

Within Ukraine scientists consider the following questions in poysheniya carrying capacity of security structures:

  1. Displays current issues keep mining.
  2. The study of general issues influence of rock pressure on the protected output.
  3. Research and development of methods to increase the life of excavation.

Browse by topic outside of Ukraine showed that carried a lot of research to increase the carrying capacity ohrnnyh facilities, and also the problems of modeling these systems.

The main part of

In 60-70% of cases, the poor state of workings, supported behind the lava rocks due to intense displacements of the soil. Polysyllabic process of swelling rocks soil determines a wide range of ways to combat it. And, as practice shows, some only way to prevent heaving rocks at the increasingly complex conditions of the soil layers is not enough working out, and to ensure sustainability of production need to address its maintenance and protection in the complex. Moreover, well-chosen method and means of protection are the most effective way to reduce the cost of mounting and maintaining excavations [1]. Very often a means of protecting themselves (rubble strips BZHBT, cast strips, etc.), namely, the scheme of their installation and placement on the formulation, are causes intense swelling of the rocks of the soil, and these structures play the role of the stamp, from under which rock squeezed into the cavity production [2, 3].

Thus, the development of methods and definitions of their parameters should include number of studies of stress-strain state (SSS) surrounding the array.

The development of computing technologies has led to the creation of a large number of programs that use the most common method for analysis of stress-strain state - a finite element method (FEM). Modern computer technology allows us all the easier to simulate and calculate the various mechanical systems. To accomplish this, there is still quite a large number of software environments running in one direction or another. This paper was selected program to build 3D models for strength analysis - SolidWorks 2009 with built-in billing module CosmosWorks 2009.

In the simulation model are the soil excavation under the action of her uniformly distributed and unevenly distributed load on a rectangular platform in the analytical SolidWorks Design and solved the problem of statics in the linear formulation by means of a package finite element analysis CosmosWorks.

We consider two variants of mining:

  1. Traditional rubble strips with uniform load distribution across the width of the strip (pic. 1);
  2. Rubble strips of the bands of variable stiffness (pic. 2).
Rubble strips with a uniform load distribution across the width of the strip
Pic.1 - General view of the security structures (rubble strips) with a uniform load distribution across the width of the strip
Rubble strips of variable stiffness
Pic.2 - General view of the security structures (rubble strips) of variable stiffness

Kinematic boundary conditions can be specified on the faces, edges and vertices. In processing the faces of the canonical form - flat (Plane), cylindrical (Cylindrical), or spherical (Spherical) - the program "feels" their shape and boundary conditions are applied in the light produced by these objects of ways. In the simulation used the following boundary conditions: - Fixing (Fixed) - fixed geometry. Fixation movements in all directions of the lower base of the model. As well as the prohibition movement in the horizontal direction, with a free sliding in the vertical direction at the sides of the model.

Static boundary conditions - is power. They can be focused and have a dimension of "power", distributed along the edge of the "force / length", distributed on the surface of "the force / area." The latter include the pressure. In the simulation used types of static boundary conditions.

Directional constant pressure - perpendicular to the selected face. Consider the details given in the simulation boundary conditions.

The top of the model, there are five rectangular areas. From the width of area equal to the width of one strip in the rubble zone - one meter. The length of the rectangular area is 10 meters in order to keep a proportion of 1:10 and in the future to consider the plane problem. When considered traditional rubble strip with the same degree of compliance, for each of the areas applied uniformly distributed load of 100 MPa (pic. 3).

Scheme of loading 100-100MPa
Pic.3 - Scheme of loading 100-100MPa

When considered security installations of variable stiffness (variable compliance), the first platform was attached load 100 MPa, and the subsequent (2-5) is uniformly decreasing load, depending on the model under investigation (pic.4).

Animated load distribution of the underlying rocks
Pic.4 - Animated load distribution of the underlying rocks
Animation is implemented using Adobe Photoshop CS3: the number of frames - 4, the number of cycles of repetition - 7, the volume of 151.677 KB

To determine the parameters of the proposed method would be appropriate to use the system Plaxis, which is a specialized two-dimensional computer program based on finite element method, which is used to calculate deformation and geotechnical stability of various objects. The real situation can be simulated by the model of plane strain or axisymmetric models. The program has a user-friendly graphical interface that allows users to quickly create a geometric model and finite element mesh based on the presented vertical cross-section.

Create two-dimensional finite element system in Plaxis is based on a geometric model. This model is created in the xy plane in a coordinate system, whereas the z-direction is out of the plane. In the coordinate system z-direction shows the direction of the user (pic 5).

Coordinate system and positive components of the stress
Pic.5 - Coordinate system and positive components of the stress

In all cases, input, output, and power compression stresses are negative, whereas the tensile stresses and forces are positive.

In Plaxis software system we calculated the number of models, each of which provided security installations of variable stiffness, but at a different location on its relation to the development.

To calculate the models in the program input Plaxis created a two-dimensional virtual model. It is filled with material parameters close to real conditions.

At the initial stage of the first model was worked out. Then, at the upper bound of the model was applied distributed load of 10 kN/m2 and make calculations for determining the vertical stresses and displacements.

The following models were created based on first removing the protective structure of production.

Conclusion

The analysis of unconventional ways to increase the stability of the excavation excavations showed that the main trend of development aimed at creating conditions under which the forces arising in the vicinity of production would be directed away from the most production in order to minimize their impact on the stability of the latter.

Important Note

In writing this essay master's work is not completed yet. Final completion: December 2011 Full text of the materials on the topic can be obtained from the author or his manager after that date.

Literature

  1. Технология, механизация и организация проведения горных выработок / Б.В. Бокий, Е.А. Зимина, В.В. Смирняков, О.В. Тимофеев. Учебник для вузов. 3-е изд., перераб. и доп. М., Недра, 1983.– 264с.
  2. Прогнозування зближень порід контуру, проведених слідом за лавою підготовчих виробок на пологих пластах: Автореф. дис... канд. техн. наук: 05.15.02 / О.Ю. Стулішенко; Донец. нац. техн. ун-т. — Донецьк, 2002. — 17 с.
  3. Негрей С.Г., Мокриенко В.Н. Об особенностях пучения пород почвы выемочных выработок в условиях пласта m3 шахты им. В.М.Бажанова // Проблеми гірничої технології: Матеріали регіональної науково-практичної конференції, Красноармійський індустріальний інститут ДонНТУ, 2008.– С. 97-102.
  4. Пат. SU 1495437 (A1), МКИ 4 E21 D11/00, 13/02. Компенсационная система для охраны горных выработок: Пат. SU1495437 (A1), МКИ 4 E21 D11/00, 13/02; Рева В.Н. [SU]; Нейман Л.К. [SU]; Мельников О. и др. : Павлоградуголь 4275691/23-0; Заявл. 02.07.87: Опубл. 23.07.89, НКИ 622.281(088.8). -3с.
  5. Пат. RU(11) 2074321(13)C1 МКИ E21F5/00, E21D13/02 Способ предотвращения пучения пород почвы в выработках: Пат. RU(11) 2074321(13)C1 МКИ E21F5/00, E21D13/02; Космодамианский А. С.[UA],Полухин В. А.[UA],Сторожев В. И.[UA],Шелегеда К. Г.[UA],Полухина И. В.[UA],Калоеров С. А.[UA]. Донецкий научно-исследовательский угольный институт (UA) 92006407/03 Заявл. 12.11.1992 Опубл. 27.02.1997.- 4 с.
  6. Пат. RU(11) 2079661(13)C1 МКИ E21D11/14 Способ поддержания подготовительных выработок: Пат. RU(11) 207966(13)C1 МКИ E21D11/14; Павлов Б.С., Зайцев Ю.Ф., Фотеев В.Ф.; Воркутинское производственное объединение по добыче угля «Воркутауголь» 94039801/03; Заявл. 24.10.1994 Опубл. 20.05.1997.- 4 с.
  7. Пат.RU(11) 2105155 (13)C1 МКИ E21F15/00 Устройство для охраны выемочных штреков: Пат.RU(11) 2105155 (13)C1 МКИ E21F15/00; Литвинов А.В.; Шахтинский филиал Новочеркасского государственного технического университета; 95120706/03 Заявл. 08.12.1995: Опубл. 20.02.1998. -3с.
  8. Пат. RU(11) 2134350(13) МКИ E21D20/02 Способ крепления горных выработок, пройденных в породах, склонных к пучению: Пат. RU(11) 2134350(13) МКИ E21D20/02; Атрушкевич А.А., Сурков А.В., Радиковский М.И.; Всероссийский научно-исследовательский и проектно-конструкторский институт добычи угля гидравлическим способом 95115423/03 Заявл. 31.08.1995: Опубл. 10.08.1999. -3с.
  9. Пат. RU(11) 2172837(13)C2 МКИ E21D19/02 Способ охраны пластовых горных выработок: Пат. RU(11) 2172837(13)C2 МКИ E21D19/02; Воскобоев Ф.Н., Яковлев Д.В., Мельков А.Д., Гринько Н.К., Сыркин П.С., Удовиченко В.М., Звездкин В.А., Богомолов В.Ф.; Государственный научно-исследовательский институт горной геомеханики и маркшейдерского дела 97118038/03 Заявл. 30.10.1997: Опубл. 10.07.1999. -4с.
  10. Пат. RU(11) 2186216 (13)C1 МКИ E21D11/00 Способ охраны подготовительной выработки: Пат. RU(11) 2186216 (13)C1 МКИ E21D11/00; Бочаров И.П., Софронов Е.В., Долоткин Ю.Н., Погудин Ю.М.; Открытое акционерное общество по добыче угля «Воркутауголь» 2001113615/03 Заявл. 18.05.2001 Опубл. 18.05.2001. -5с.
  11. Пат RU(11) 2212543 (13)C1 МКИ E21F5/00, E21C41/16 Способ охраны горных выработок с помощью податливой системы: Пат RU(11) 2212543 (13)C1 МКИ E21F5/00, E21C41/16; Розенбаум М.А., Рева В.Н., Цивка Ю.В; ГФУП Государственный научно-исследовательский институт горной геомеханики и маркшейдерского дела - Межотраслевой научный центр 2002102885/03 Заявл. 01.02.2002 Опубл. 20.09.2003. -4с
  12. Пат. SU1645534 (A1) МКИ Е 21 D 11/10 Способ возведения крепи горных выработок : . Пат. SU1645534 (A1) МКИ Е 21 D 11/10 Картавых Г. И. ; Павлоградуголь 4264910/03 Заявл. 08.05.87 Опубл. 30.04.91. -2с
  13. Пат. SU 1631182 A1 МКИ Е 21 D11/10 Породная крепь горных выра¬боток: Пат. SU 1631182 A1 МКИ Е 21 D11/10; Бурков Ю.В., Комаров Г.И. Московский горный институт 4624982/ 03 Заявл. 14.11.88 Опубл. 28.02.91. -3с
  14. Пат. UA (11) 36714 (13)A МКИ E21D13/02, E21D11/00, E21C41/18; Спосіб охорони підготовчої виробки: Пат. UA (11) 36714 (13)A МКИ E21D13/02, E21D11/00, E21C41/18; Колоколов О.В., Табаченко М. М., Медяник В. Ю. ДЕРЖАВНЕ ВІДКРИТЕ АКЦІОНЕРНЕ ТОВАРИСТВО ШАХТА “ПРОГРЕС” 2000020523 Заявл. 01.02.2000 Опубл. 16.04.2001. - 4с
  15. Пат. SU (11) 1701920 А1 МКИ Е 21 С 41/20, 41/18; Способ возведения бутовой полосы : Пат. SU (11) 1701920 А1 МКИ Е 21 С 41/20, 41/18; Бондаренко Ю. В., Макеев А. Ю., Теличко В. И., Сапицкий К. Ф. Донецкий политехнический институт 4790416/03 Заявл. 12.02.90 Опубл. 30.12.9. - 3с
  16. Уланов А. И. Математическое моделирование геомеханических процессов. Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. научная статья , стр. 330-337 С.-Петербург; –2009.
  17. Карасев М.А. Эффективное применение численных методов анализа для решения задач геомеханики. Записки Горного института. С. 161-165.2010. Т. 185.
  18. Рыжков А.В. Никулин Л.А. “Решение бигармонического уравнения методом Зейделя”. Воронеж, 1997.
  19. Мудров А.Е. Численные методы. - Томск; МП «РАСКО», 1991. - 272 с.
  20. С.Г. Псахье, А.Ю. Смолин, Ю.П. и др. Моделирование поведения сложных сред на основе комбинированного дискретно-континуального подхода. Институт физики прочности и материаловедения СО РАН, Томск, 2003.
  21. Сачков В.Н. Введение в комбинаторные методы дискретной математики.- Наука; 2004. -385 с: ил.
  22. Колесников Г. Н., Раковская М. И. Об одном варианте метода дискретных элементов. -сб.: Материалы XV Международной конференции по вычислительной механике и современным прикладным программным системам (ВМСППС-2007). М.: Вузовская книга, 2007.
  23. А.П. Господариков Л.А.беспалов применение метода граничных элементов при расчете параметров напряженно-деформированного состояния массива горных пород в окрестности выработок различного очертания. Записки Горного института; Стр. 217-220; С.-Петербург, 2009.
  24. Бенерджи П., Баттерфилд Р. Метод граничных элементов в прикладных науках.- Мир; 1984. -494.
  25. А.Г.Скуров, Л.Д.Павлова алгоритм прогноза напряженно-деформированного состояния углепородного массива в зоне механического разрушения угля в проходческом забое. Горный информационно-аналитический бюллетень. Стр.69; Новокузнецк 2002.
  26. Багриновский К. А., Годунов С. К. Разностные схемы для многомерных задач. ДАН СССР, 1957, т. 115, № 3, 431—433.
  27. А. А. Алямовский, А. А. Собачкин, Е. В. Одинцов, А. И. Харитонович, Н. Б. Пономарев. SolidWorks 2007/2008. Компьютерное моделирование в инженерной практике. — СПб.: БХВ-Петербург, 2008. -1040 с.
  28. Фадеев А.Б. Метод конечных элементов в геомеханике. М.: Недра, 1987. 221 с.
  29. С.Ф. Клованич И.Н. Мироненко. Метод конечных элементов в механике железобетона. -Одесса - 2007.
  30. Оден Дж. Конечные элементы в нелинейной механике сплошных сред: Пер. с англ. — М.: Мир, 1976.